RESEARCH ARTICLE

Area-to-Area Poisson Kriging and Spatial Bayesian Analysis in Mapping of Gastric Cancer Incidence in Iran

Naeimehossadat Asmarian¹, Tohid Jafari-Koshki², Ali Soleimani³, Seyyed Mohammad Taghi Ayatollahi¹*

Abstract

Background: In many countries gastric cancer has the highest incidence among the gastrointestinal cancers and is the second most common cancer in Iran. The aim of this study was to identify and map high risk gastric cancer regions at the county-level in Iran. Methods: In this study we analyzed gastric cancer data for Iran in the years 2003-2010. Area-to-area Poisson kriging and Besag, York and Mollie (BYM) spatial models were applied to smoothing the standardized incidence ratios of gastric cancer for the 373 counties surveyed in this study. The two methods were compared in term of accuracy and precision in identifying high risk regions. Result: The highest smoothed standardized incidence rate (SIR) according to area-to-area Poisson kriging was in Meshkinshahr county in Ardabil province in north-western Iran (2.4,SD=0.05), while the highest smoothed standardized incidence rate (SIR) according to the BYM model was in Ardabil, the capital of that province (2.9,SD=0.09). Conclusion: Both methods of mapping, ATA Poisson kriging and BYM, showed the gastric cancer incidence rate to be highest in north and north-west Iran. However, area-to-area Poisson kriging was more precise than the BYM model and required less smoothing. According to the results obtained, preventive measures and treatment programs should be focused on particular counties of Iran.

Keywords: Gastric cancer- ATA poisson kriging- spatial bayesian analysis- Iran

Introduction

Cancer mortality and incidence maps are used by public health officials to identify areas of excess and to guide surveillance and control activities (Mungiole et al., 1999). Gastric cancer is the fifth most common cancer and third cancer leading to death in the world. Seventy percent of gastric cancer cases occur in the developing countries, with a higher incidence in men compared with women (International Agency for Research on Cancer All Cancers, 2012).

Iran is a country in South-Western Asia in the Middle East area with a population of about 70,000,000 during the years 2000-2010. Cancer is the third cause of mortality after car accident and cardiovascular disease in Iran, so it is an important problem in public health in this country (Mousavi et al., 2008). According to National Cancer Registry Report in 2009 in Iran, number of cancer mortality has increased during the previous two decades in this country. Since this disease is prevalent in the elderly population and population of Iran is tending to senility, the incidence of this disease is on increase in Iran (Hajian et al., 2003).

About half of the common cancers are related to gastrointestinal ones in Iran and gastric cancer has the second incidence ratio among all of the cancers. This is the most common cancer among men and the third cancer in women after breast cancer and cervix cancer in this country (International Agency for Research on Cancer All Cancers, 2012).

Therefore, gastric cancer mapping for describing the geographical features of the risk of the disease, identifying unusual high risk areas of gastric cancer incidence, and providing updated and precise results until 2010 were the main aims of this study.

In this paper, to estimate smoothed SIRs, we fitted two different models:

1) Area-to-Area Poisson kriging: The counties of Iran vary in size, shape and population. Moreover, the area data used in this study was count data based on the Poisson distribution, so Area-to-Area Poisson kriging approach was used for estimating the parameters of the map. The Area-to-Area Poisson kriging approach was recommended for estimation of disease mapping parameters, since this method accounts for spatial support and pattern in irregular spatial area, leading to more precise and accurate estimates of the risk (Goovaerts, 2005; Goovaerts, 2006; Goovaerts et al., 2008).

2) The Besag, York and Molliemodelf, is commonly used in epidemiological studies and can be implemented

¹Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz. ²Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz. ³Department of Public Health Maragheh University of Medical Science, Maragheh, Iran. *For Correspondence: ayatolahim@sums.ac.ir

Asian Pac J Cancer Prev, 17 (10), 4587-4590
using public domain software (Besag et al., 1991).

ATA Poisson kriging modeling accounts the spatial structure while BYM assumed that all counties have similar shapes and sizes, with a uniform population density. So, ATA approach makes less smoothing and is more precise than other approaches such as BYM model and point Poisson kriging that ignore the spatial support. In addition to BYM model which yields prediction variance that change mainly as a function of the predicted ratio, the Poisson kriging variance increases in large sparsely populated counties (Goovaerts and Gebreab, 2008).

Materials and Methods

The case of interest was gastric cancer patients registered between the years 2003-2010. According to the Iran statistical center reports, the population at risk was obtained from the census of 2006. Population was approximately stable during 2003-2010 but the geographical units are 373 counties with a variety of sizes and shapes. Recorded data on incident cases of cancer were obtained from Ministry of Health and Medical Education (in non-infectious diseases management center) of Iran. The major sources of data collection related to cancer were reports from pathology laboratories, hospitals and radiology clinics. The data were collected according to the International Classification of Diseases (C16) in Iran.

Standardized incidence ratios by county were calculated using the direct method. In order to estimate the smoothed SIRs, we fitted BYM model using OpenBUGS version 3.2.3 a standard public domain package for Bayesian inference using Markov Chain Monte Carlo (MCMC) methods (Lunn et al., 2009; Lawson et al., 2003) and ATA Poisson Kriging using the public domain software “poisson-kriging.exe” described in (Goovaerts, 2003) and ATA Poisson Kriging in modeling accounts the spatial heterogeneity, respectively. Methodological aspects of the Bayesian analysis applied to geographical mapping are reported in previous articles (Besag et al., 1991).

Results

The population at risk (scaled 1/100,000) of 2006 as default for 373 counties from thirty one provinces in Iran is showed in Figure 1 (A). The standardized incidence ratio (SIR) of gastric cancer in each counties over 2003-2010 is shown in Figure 1 (B). The highest standardized incidence ratio (SIR) of gastric cancer was seen in Sari county (2.9), the capital of Mazandaran province in the north of Iran and the overall SIRs mean was 0.8.

The smoothed SIRs using ATA Poisson kriging and corresponding prediction standard deviations are mapped in Figures 2(A) and 2(B) respectively. The smoothed SIRs mean was 0.88 and prediction standard deviations mean was 0.07. Figure 2(A) shows that the highest and lowest ratio of gastric cancer were in Meshkinshahr county in Ardabil province in the north-west of Iran (2.4, SD=0.05) and Sarbaz county in Sistan-Blochestan province in the south-east of Iran (0.01, SD=0.06), respectively. The range of standard deviation was (0.01, 0.25), as shown in Figure 2 (B).

The smoothed SIRs using BYM model and corresponding estimated standard deviations are mapped

Figure1. Map Depicting General Population Density (scaled 1/100,000) (A); Map of the Standardized Incidence Ratios (SIRs) of Gastric Cancer in Iran 2003-2010 (B).

Figure2. Map of the Smoothed SIRs of Gastric Cancer in Iran During 2003-2010 by ATA Poisson Kriging (A); Map of the Standard Deviations Estimated by ATA Poisson Kriging (B).
Approach, Meshkinshahr in Ardabil has higher risk than other counties. According to ATA Zanjan, Kordestan, WestAzarbayjan and EastAzarbayjan provinces in Iran with the highest incidence have a higher risk than other counties. Because of Iran’s heterogeneous spatial pattern, the result of ATA is more reliable (Asmarian et al., 2013).

So people living in northern and north-western areas of Iran have a higher probability of gastric cancer occurrence than those living in other areas. Several factors such as infection with Helicobacter pylori, smoking, high salt consumption, inadequate antioxidants consumption, lifestyle and environmental influential factors, soil selenium, soil nitrate and high level of pesticide use, are known risk factors for people in these areas (Kolahdoozan et al., 2010; Behnampour et al., 2014).

Gastric cancer is known as a poor prognosis disease with a high degree of mortality in Iran. In order to control this cancer, national screening tests (like in Japan) and recording the diseases data with high precision, especially in high-risk areas, should be properly carried out.

Acknowledgements

The authors wish to thank the office of National Cancer Registration Center and of non-communicable disease, Ministry of Health and Medical Education, Iran. Also, the authors would like to thank of Center for Development of Clinical Research of Nemazee Hospital (Shiraz University of Medical Sciences, Shiraz, Iran) and Dr. Nasrin Shokrpour for editorial assistance.

References


Hajian-Eskandar SMH, Beheshti Uni Med Sci health, 3, 239-45

Kavoussi A, Bashiri Y, Mehrabi Y, Etemad K, Teymourpour A (2014). Identifying high-risk clusters of gastric cancer...