

Preventing Proximal Radio-Ulnar Joint Screw Penetration during Coronoid Fracture Fixation: A 3D-Digital Modeling and Cadaver Study

Hamid Namazi¹, Armin Akbarzadeh¹*, Ayub Gharebeigi Tavabeh¹, Seyyed Arash Haghpanah², Alireza Doroudchi³

¹Department of Orthopedic Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

*Corresponding author: Armin Akbarzadeh

Address: Department of Orthopedic Surgery, Chamran Hospital, Chamran Blvd.,

Postal code: 71948-15644, Shiraz, Iran. Tel: +98 9173369952;

e-mail: armin.akbarzadeh@ymail.com

Received: May 20, 2024 Revised: June 8, 2024 Accepted: June 27, 2024

ABSTRACT

Objective: Intra-articular screw penetration is a probable complication of coronoid fracture fixation. The present study aimed to determine the best radiography technique for visualizing the proximal radioulnar joint (PRUJ) space. Moreover, it aimed to determine the safe angle and length of the screw to avoid PRUJ penetration during coronoid fracture fixation.

Methods: The Mimics software was used to construct a three-dimensional model of a healthy man's forearm from a computer tomography scan. It was analyzed using the Solidworks software to determine the X-ray angle that clearly showed the PRUJ space to detect penetration of screws from the coronoid process into the PRUJ and determine the maximum screw angle and length that could be used without intra-articular penetration. To verify these findings, a cadaveric study combined with radiographs was conducted.

Results: To visualize PRUJ space, the optimal X-ray angle was 13° lateral to the perpendicular line when the forearm was positioned at full supination. If the coronoid process was segmented into zones 1 (closest to the radioulnar joint) to 4 (farthest from the joint), the screw could only be inserted at a right angle in zone 1. In zones 2, 3, and 4, inclination angles less than 15, 35, and 60 would prevent intra-articular penetration, respectively. **Conclusions:** The X-rays could visualize the PRUJ space with an anteroposterior radiograph at an angle of 13° ulnar deviation from the perpendicular plane. During coronoid process fracture fixation, shorter screws with less lateral inclination were safer when inserting screws in the zones of the coronoid process adjacent to the PRUJ.

Keywords: Screw placement, Coronoid process, Cadaver, Elbow, Computer simulation, Radiography.

Please cite this paper as:

Namazi H, Gharebeigi Tavabeh A, Haghpanah SA, Akbarzadeh A, Doroudchi AR. Preventing Proximal Radio-Ulnar Joint Screw Penetration during Coronoid Fracture Fixation: A 3D-Digital Modeling and Cadaver Study. *Bull Emerg Trauma*. 2024;12(3):117-123. doi: 10.30476/beat.2024.102710.1514.

²Department of Solid Mechanics Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran

³Legal Medicine Research Center, Iranian National Legal Medicine Organization, Tehran, Iran

This study simulated ORIF of coronoid fixation using screws with anteroposterior direct and not posteroanterior directed screws. As a result, the recommended length and angles might not be applicable to posteroanterior directed screws. However, the suggested X-ray beam is still helpful for inspecting the PRUJ for screw penetration. The present 3D digital and cadaver models belonged to adult males. Previous studies found that the coronoid process dimensions were different between men and women [19]. Therefore, the results of this study cannot be generalized to the female and pediatric populations. Accordingly, since this study does not consider anatomical variations, these findings might not be generalizable to different body types or ethnicities. Finally, the present results were produced with the prerequisite that the screw had no deviation distally or proximally (angle between the screw and the transverse plane=0°), and that the forearm was positioned in complete supination. However, in practice, surgeons attempted to insert the screw perpendicular to the fracture plane. Since the fracture plane might face any direction, the surgeon might prefer to insert the screws with a more proximal or distal angle. Furthermore, during the procedure, the limb was manipulated and repositioned frequently, which made it difficult for the surgeon to determine the angles. Besides, it was not possible to assess which method of screw fixation could provide a more stable fixation. Thus, we just focused on the angle of

screws and their length.

The optimal X-ray angle for assessing the PRUJ was 13° ulnar deviation of the X-ray beam when the forearm was in complete supination. When fixing a coronoid process fracture, shorter screws with less lateral inclination should be utilized in the coronoid process zones closest to the radio-ulnar joint.

Declaration

Ethical approval for study: The investigation was approved by the local ethics committee (code: IR.SUMS.MED.REC.1401.177).

Conflict of Interest: The authors do not have any potential conflicts of interest concerning this manuscript.

Funding: The author(s) received no financial support for the preparation, research, authorship, and/or publication of this manuscript.

Informed consent: Informed written consent was obtained from the first-degree relatives of the deceased people if they were available.

Acknowledgment: The authors would like to thank Shiraz University of Medical Sciences, Shiraz, Iran, and also the Center for Development of Clinical Research of Nemazee Hospital.

References

- Sridhar MS, Hunter MD, Colello MJ. Periarticular screws: what's in and what's out of the joint? BMC musculoskeletal disorders. 2022;23(1):1-11.
- 2. Li B, Xiong W, Chang S. Research progress on intra-articular screw penetration in proximal humeral fracture treated with locking plate. Zhongguo xiu fu Chong Jian wai ke za zhi= Zhongguo Xiufu Chongjian Waike Zazhi= Chinese Journal of Reparative and Reconstructive Surgery. 2021;35(4):403-408.
- Klein JS, Mijares MR, Chen D, Orbay JL, Landy DC, Owens PW. Radiographic evaluation of the distal radioulnar joint: technique to detect sigmoid notch intra-articular screw breach in distal radius fractures. Techniques in Orthopaedics. 2020;35(1):73-77.
- 4. Hoehmann CL, DiVella M, Osborn NS, et al. Excessively long interfragmentary screws for posterior wall acetabular fractures can predict intra-articular penetration. Orthopaedics & Traumatology: Surgery & Research. 2022;108(2):103202.

- Kumar A, Jameel J, Qureshi OA, Kumar M, Haider Y, Das S. Modified radiographic views to prevent the anterosuperior and posterosuperior bony violation during screw fixation of femoral neck fractures. European Journal of Orthopaedic Surgery & Traumatology. 2021;31(3):459-464.
- Giordano V, Gomes AF, Amaral NP, Albuquerque RP, Pires RE. Preventing surgical complications: A survey on surgeons' perception of intra-articular malleolar screw misplacement in a cadaveric study. *Patient Safety in* Surgery. 2011;5(1):1-5.
- 7. Anglen JO, DiPasquale T. The reliability of detecting screw penetration of the acetabulum by intraoperative auscultation. *Journal of orthopaedic trauma*. 1994;8(5):404-408.
- Karkenny AJ, Mendelis JR, Geller DS, Gomez JA. The role of intraoperative navigation in orthopaedic surgery. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2019;27(19):849-858.
- 9. Takemoto RC, Gage M, Rybak L, Zimmerman I, Egol KA. Accuracy of detecting screw penetration of

- the radiocarpal joint following volar plating using plain radiographs versus computed tomography. *Am J Orthop (Belle Mead NJ)*. 2012;**41**(8):358-361.
- Zhang L, Lin G, Yang G, et al. Multiple radiographic projections in detecting intra-articular screw penetration during fixation of femoral neck fractures. Orthopedics. 2014;37(10):e885-e891.
- 11. Rashidifard C, Boudreau J, Revak T. Accuracy of posterior wall acetabular fracture lag screw placement: correlation between intraoperative fluoroscopy and postoperative computer tomography. *Journal of Orthopaedic Trauma*. 2020;34(12):650-655.
- **12.** Budoff JE. Coronoid fractures. The Journal of hand surgery. 2012;37(11):2418-23.
- 13. O'Driscoll SW, Jupiter JB, Cohen MS, Ring D, McKee MD. Difficult elbow fractures: pearls and pitfalls. Instructional course lectures. 2003;52:113-34.
- 14. Lanzerath F, Hackl M, Wegmann K, Müller LP, Leschinger T. The treatment of anteromedial coronoid facet fractures: a systematic review.