

Journal Homepage: www.cellmolbiol.org

Cellular and Molecular Biology

Original Article

Assessment of immunological factors in COVID-19 patients treated by convalescent plasma

Mozhdeh Heidari¹, Ramin Yaghobi¹, Mohsen Moghadami², Farid Zand³, Mohammad Javad Fallahi⁴, Ali Akbar Pourfathollah⁵, Golnoush Zarnegar⁶, Alireza Salah⁶, Saeedeh Soleimanian^{1,} Mehdi Golshan¹, Ali Jangjou⁷, Mohammad Hossein Karimi^{1*}

- ¹ Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- ² Health PolicyResearch Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- ³ Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- ⁴Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- ⁵ Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ⁶ High Institute for Research and Education in Transfusion Medicine (IRTEM), Tehran, Iran
- ⁷Department of Emergency Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Article Info

OPEN ACCESS

Article history:

Received: June 07, 2023 Accepted: August 26, 2024 Published: September 30, 2024

Use your device to scan and read the article online

Abstract

Following the outbreak of COVID-19, several immunotherapy methods were used to modulate the immune responses of patients. In this study, we aimed to evaluate the immune response to COVID-19 in patients receiving convalescent plasma. In this regard, this randomized controlled trial included 30 patients who were divided into two groups according to receiving convalescent plasma or normal control plasma. Samples from both groups were collected on days 0, 1, 3, 5 and 7 after plasma infusion. We measured the expression level of TLR7/8, IRF3/7, CTLA-4, PD-1 and T cell transcription factors by Real-time PCR in the mentioned groups. Thirteen cytokines were also evaluated using flow cytometry method. Results showed that compared to the normal control plasma group, the expression levels of TLR7, 8, IRF3, 7 and PD-1 and CTLA-4, on days 3, 5 and 7 after convalescent plasma infusion, were significantly decreased. On the other hand, Gene expression results showed that the expression levels of Tbet, RORy3 and Foxp3 on days 3, 5 and 7 after convalescent plasma infusion were significantly increased compared to the normal control plasma group. After convalescent plasma infusion, the viral load was significantly decreased compared to the normal control plasma group. Convalescent plasma infusion also reduced the plasma cytokines levels, including IL-6, IL-10, and IL-4, and enhanced the level of IL-2, IFN- γ and perforin comparing the normal control plasma group. According to the results, the convalescent plasma infusion led to a decrease in the expression of innate immunity receptors and an increase in the expression of transcription factors of adaptive immunity. Therefore, it may be concluded that convalescent plasma infusion can modulate the immune response. To achieve a reliable consequence, further studies are required.

Keywords: COVID-19, Convalescent plasma, Plasma therapy, Immune response, Co-stimulatory molecules

1. Introduction

Since December 2019, Coronavirus 2019 (COVID-19), caused by SARS-CoV-2 (Acute Respiratory Syndrome of Coronavirus 2), has spread worldwide with significantly high rates of transmission and substantial mortality. The symptoms of COVID-19 vary from person to person. In patients, mild and self-limiting respiratory illnesses up to severe progressive pneumonia, multiple organ failure, and even death [1, 2] may be seen. Currently, there is no efficient treatment to control this disease.

Following the coronavirus disease 2019 (COVID-19) pandemic caused by the novel human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), convalescent plasma has been used globally to treat hospitalized

patients and prohibit the progression of disease in non-hospitalized patients [3, 4]. Due to the lack of definitive treatment for COVID-19, great hope of antibody therapy usefulness has also resulted in the commercial production of other immunoglobulin therapies, such as monoclonal antibodies and hyperimmune products [5-7].

In general, convalescent plasma represents a form of passive antibody therapy based on the transfer of pathogen-specific antibodies from a recovered patient to stop the severity or treat the disease [8]. In contrast to vaccines, this method just requires the availability of disease survivors willing to donate plasma and standard blood collection infrastructure to collect and distribute convalescent plasma [9].

 $*\ Corresponding\ author.$

E-mail address: Kariminh@sums.ac.ir (M. H. Karimi). **Doi:** http://dx.doi.org/10.14715/cmb/2024.70.9.1

Abbreviation

Coronavirus 2019 (COVID-19), syndrome coronavirus 2 (SARS-CoV-2), randomized clinical trials (RCTs), CO-VID-19 convalescent plasma (CCP), convalescent plasma (CP), normal control plasma (NCP), polymerase chain reaction (PCR).

Conflict of interest

There is no conflict of interest to declare.

Consent for publications

All authors read and approved the final manuscript for publication.

Ethics approval and consent to participate

The present investigation was conducted in accordance with the recommendations of ethical guidelines. The research protocol was authorized by the Shiraz University of Medical Sciences (IR.SUMS.REC.1399.020).

Protection of Human Subjects and Animals in Research

All procedures followed were in accordance with the ethical standards of the Shiraz University of Medical Sciences on human experimentation. According to the Helsinki Declaration, informed written consent has been acquired from every patient or his legal relative.

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Authors' contributions

Mozhde Heidari: Methodology, Validation, Formal analysis, Investigation Writing — original draft; Ramin Yaghobi: basic study conception and design; Mohsen Moghadami: clinical study conception; Farid Zand: clinical study conception; Mohammad Javad Fallahi clinical study conception; Ali Akbar Poufathollah: basic study conception and design, manuscript preparation; Golnoush Zarnegar: sample collection; Alireza Salah: sample collection; Saeedeh Soleimanian: Methodology; Mehdi Golshan: Methodology; Ali Jangjoo: sample collection; , Mohammad Hossein Karimi: basic study conception and design, Writing — original draft, review & celting.

Funding

This study was financially supported by Shiraz University of Medical Sciences with grant Number: 19377

Acknowledgments

The authors wish to thank from staff of the ICU Units of Namazi and Faghihi Hospitals affiliated to SUMS, also Center for Development of Clinical Research of Namazi Hospital and Pouria Karimi for editorial assistance.

References

- 1. Abdel-Misih SR, Bloomston M (2010) Liver anatomy. Surg Clin North Am 90: 643. doi: 10.1016/j.suc.2010.04.017
- Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323: 1239.

- doi:10.1001/jama.2020.2648
- 3. Olivares-Gazca JC, et al (2020) Infusion of convalescent plasma is associated with clinical improvement in critically ill patients with COVID-19: a pilot study. Rev Investig Clin 72: 159.doi: 10.24875/ric.20000237
- 4. Perotti C, et al (2020) Mortality reduction in 46 patients with severe COVID-19 treated with hyperimmune plasma. A proof-of-concept, single-arm, multicenter trial. Haematologica 105: 2834. doi: 10.3324/haematol.2020.261784
- Klassen SA, et al (2021) Convalescent Plasma Therapy for CO-VID-19: A Graphical Mosaic of the Worldwide Evidence. Front Med 8: 684151 doi:10.3389/fmed.2021.684151
- Okamori S, et al (2021) Coronavirus disease 2019-associated rapidly progressive organizing pneumonia with fibrotic feature: Two case reports. Med 99: e21804. doi: 10.1097/MD.0000000000021804
- 7. Casadevall A, et al (2020) The assessment of convalescent plasma efficacy against COVID-19 Med 1: 66. doi: 10.1016/j. medj.2020.11.002
- 8. Casadevall A, Scharff MD (1995) Return to the past: the case for antibody-based therapies in infectious diseases. Clin Infect Dis 21: 150. doi: 10.1093/clinids/21.1.150
- 9. Boeckh M, Geballe AP (2011) Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest 121: 1673. doi: 10.1172/JCI45449
- 10. Casadevall A, et al (2021) SARS-CoV-2 variants and convalescent plasma: reality, fallacies, and opportunities. J Clin Invest 131: e148832. doi: 10.1172/JCI148832
- Casadevall A, Pirofski LA, Joyner MJ (2021) The principles of antibody therapy for infectious diseases with relevance for CO-VID-19. Mbio 12: e03372-20. doi: 10.1128/mBio.03372-20
- 12. Casadevall A, Pirofski LA (2020) posting date. The convalescent sera option for containing COVID-19. J Clin Invest 130: 1545. doi: 10.1172/JCI138003
- 13. World Health Organization (2020) Clinical management of severe acute respiratory infection when novel coronavirus (fnCoV) infection is suspected: interim guidance, 25 January 2020. (No. WHO/nCoV/Clinical/2020.2). World Health Organization
- Grasselli G, (2020) COVID-19 Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 323: 1574. doi:10.1001/jama.2024.5596
- 15. Natarajan H, et al (2020) SARS-CoV-2 antibody signatures robustly predict diverse antiviral functions relevant for convalescent plasma therapy. medRxiv. DOI: 10.1101/2020.09.16.20196154
- 16. Pirofski LA, Casadevall A (2020) Pathogenesis of COVID-19 from the perspective of the damage-response framework. mbio 11: 10. doi: 10.1128/mBio.01175-20
- 17. Wang Y, et al (2020) Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest 130: 5235. doi: 10.1172/JCI138759
- Casadevall A, Pirofski LA (2020) In fatal COVID-19, the immune response can control the virus but kill the patient. PNAS 117: 30009-30011.doi: 10.1073/pnas.2021128117
- 19. Bandopadhyay P, et al (2021) Nature and Dimensions of Systemic Hyperinflammation and its Attenuation by Convalescent Plasma in Severe COVID-19. J Infect Dis 224: 565. doi: 10.1093/infdis/jiab010
- Wooding DJ, Bach H (2020) Treatment of COVID-19 with convalescent plasma: lessons from past coronavirus outbreaks. Clin Microbiol Infect 26:1436. doi: 10.1016/j.cmi.2020.08.005
- 21. Hung IF, et al (2011) Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 52: 447. doi: 10.1093/cid/ciq106
- 22. Cheng Y, et al (2005) Use of convalescent plasma therapy in SARS