SYSTEMATIC REVIEW

Open Access

The prevalence of *Leishmania* RNA virus in cutaneous leishmaniasis: a meta-analysis and systematic review

Narjes Yektaeian¹, Majid Dousti¹ and Gholamreza Hatam^{2*}

Abstract

Background While numerous studies have investigated the role and presence of RNA viruses within Leishmania parasites, the existing literature presents a fragmented view of *Leishmania* RNA virus (*LRV*) prevalence in parasites associated with cutaneous leishmaniasis (CL). Therefore, the present study aimed to elucidate the prevalence of *LRV* in parasites obtained from patients with CL.

Methods To achieve this aim, we conducted a systematic literature search across international databases, specifically Web of Science, PubMed, Embase, and Scopus. We extracted relevant studies reporting the prevalence of *LRV* in parasites obtained from patients with CL, utilizing predefined keywords and covering the period from December 1988 to August 2024. The extracted data underwent meta-analysis using a random-effects model, with statistical analyses performed in STATA version 14.

Results Our search yielded 44 studies that fulfilled the eligibility criteria, representing a total sample size of 2,276 participants. *LRV* detection was performed on biopsied lesion fragments and cultured isolates derived from these lesions. Among the 2,276 CL patients, 647 tested positive for *LRV*. We observed regional variations in *LRV* prevalence, with 45.16% in the New World (NW) and 30.00% in the Old World (OW). The majority of included studies examined *Leishmania* (*Viannia*) guyanensis, *L.* (*V.)* braziliensis, *L.* (*Leishmania*) major, and *Leishmania* (*L.*) tropica. *LRV* prevalence was 32.26% in lesion biopsies and 30.96% in cultured isolates. Notably, *LRV* exhibited a high prevalence in *Leishmania* species obtained from mucocutaneous leishmaniasis (MCL), suggesting a strong association between *LRV1* and this clinical manifestation in the NW.

Conclusion This study demonstrated a substantial prevalence of *LRV* in CL. *LRV* was identified in both lesion biopsies and cultured isolates, revealing significant regional variations with higher prevalence in the NW compared to the OW. Furthermore, a strong association was observed between *LRV1* and MCL in the NW.

Keywords Leishmania RNA virus, Cutaneous leishmaniasis, Prevalence

*Correspondence: Gholamreza Hatam hatamghr@sums.ac.ir

¹Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

²Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences. Shiraz. Iran

Yektaeian et al. BMC Infectious Diseases (2025) 25:1026 Page 14 of 16

particularly involving larger sample sizes and cross-species comparisons, is warranted to elucidate the complex role of *LRV*s in leishmaniasis.

Paranaiba et al. (2018) [63] reported that *L. (L.) major*, which exhibited a 38.5% *LRV* prevalence in our study, typically induces self-healing lesions, whereas *L. (L.) tropica* (20.6% prevalence) is more frequently associated with chronic cutaneous leishmaniasis (CCL), a condition characterized by persistent and recurrent lesions.

The increased pathogenicity of NW *Leishmania* species may be attributed to their capacity to modulate the host immune system through TLR3 and type I interferon (IFN-I) signaling pathways. This observation aligns with our findings, which revealed a significantly higher *LRV* prevalence in metastatic cases (30.6%) compared with non-metastatic cases (25.34%). Atayde et al. (2019) [14] and Ives et al. (2011) [17] have linked this inflammatory response to treatment resistance, particularly in *LRV1*-bearing parasites, which exhibit reduced clearance following standard pentavalent antimonial (SbV) therapy.

LRV1 exhibits a strong association with mucosal involvement and disease dissemination [64, 65]. Our study further investigated LRV prevalence across distinct clinical forms of CL, revealing rates of 36.0% in CL, 22.36% in ML/MCL, and 2.88% in DCL/DL. Hartley et al. (2014) [66] have previously documented lower cure rates for LRV1-positive L. (V) guyanensis and L. (V) braziliensis infections treated with SbV therapy, which corroborates our data demonstrating higher LRV prevalence in severe disease forms.

Conclusion

Our findings are consistent with previous research indicating that LRV1 is frequently associated with metastatic and severe forms of CL, potentially contributing to immune modulation and treatment resistance. However, the role of LRV2 in exacerbating CL remains unclear. The variability in findings across studies suggests that the mere presence of LRV may not reliably predict disease severity. Instead, host-related factors, environmental influences, and migration patterns likely contribute to LRV distribution and its impact on clinical outcomes.

Given the observed regional variations and the complex interactions between *LRVs*, *Leishmania* species, and host immune responses, further large-scale studies are essential. Future research should prioritize broader geographical coverage, standardized methodologies, and in-depth investigations into the mechanisms underlying *LRV*-associated pathogenesis. A comprehensive understanding of these factors will be critical for refining disease management strategies and developing targeted therapeutic interventions.

Acknowledgements

The vice chancellor of research at Shiraz University of Medical Sciences, Shiraz, Iran, supported this study (Project number 26653). The authors would like to thank Shiraz University of Medical Sciences, Shiraz, Iran, the Center for Development of Clinical Research of Nemazee Hospital, and Dr. Nasrin Shokrpour, professor of Teaching English as a Foreign Language at Shiraz University of Medical Sciences, for editorial assistance.

Authors' contributions

N.Y. and GH.H. wrote the main manuscript text, and M.D. prepared Figs. 1, 2, 3, 4, 5 and 6. All authors reviewed the manuscript.

Funding

This study received no funding support or grants.

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Declarations

Ethics approval and consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interests.

Received: 7 September 2024 / Accepted: 2 July 2025

Published online: 16 August 2025

References

- Dousti M, Hosseinpour M, D Ghasemi N, Mirfakhraee H, Rajabi SK, Rashidi S, et al. The potential role of protein disulfide isomerases (PDIs) during parasitic infections: a focus on Leishmania spp. Pathogens Disease. 2023;81:ftad032.
- Hernández-Bojorge SE, Blass-Alfaro GG, Rickloff MA, Gómez-Guerrero MJ, Izurieta R. Epidemiology of cutaneous and mucocutaneous leishmaniasis in Nicaragua. Parasite Epidemiol Control. 2020;11:e00192.
- Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7(5):e35671.
- 4. Steverding D. The history of leishmaniasis. Parasites Vectors. 2017;10:1–10.
- Cota GF, de Sousa MR, Fereguetti TO, Saleme PS, Alvarisa TK, Rabello A. The cure rate after placebo or no therapy in American cutaneous leishmaniasis: a systematic review and meta-analysis. PLoS ONE. 2016;11(2):e0149697.
- Maia-Elkhoury ANS, Yadón EZ, Idali Saboyá Díaz M, de Fátima de Araújo Lucena F, Gerardo Castellanos, J. Sanchez-Vazquez L. Exploring Spatial and Temporal distribution of cutaneous leishmaniasis in the americas, 2001–2011. PLoS Negl Trop Dis. 2016;10(11):e0005086.
- Bird R, McCaul T. The rhabdoviruses of Entamoeba histolytica and Entamoeba invadens. Annals Trop Med Parasitol. 1976;70(1):81–93.
- Cantanhêde LM, da Silva Júnior CF, Ito MM, Felipin KP, Nicolete R, Salcedo JMV, et al. Further evidence of an association between the presence of Leishmania RNA virus 1 and the mucosal manifestations in tegumentary leishmaniasis patients. PLoS Negl Trop Dis. 2015;9(9):e0004079.
- Tirera S, Ginouves M, Donato D, Caballero IS, Bouchier C, Lavergne A, et al. Unraveling the genetic diversity and phylogeny of Leishmania RNA virus 1 strains of infected Leishmania isolates Circulating in French Guiana. PLoS Negl Trop Dis. 2017;11(7):e0005764.
- Cantanhêde LM, Fernandes FG, Ferreira GEM, Porrozzi R, Ferreira RGM, Cupolillo E. New insights into the genetic diversity of Leishmania RNA virus 1 and its species-specific relationship with Leishmania parasites. PLoS ONE. 2018;13(6):e0198727.
- Santana MCO, Chourabi K, Cantanhêde LM, Cupolillo E. Exploring Host-Specificity: untangling the relationship between Leishmania (Viannia) species and its endosymbiont Leishmania RNA virus 1. Microorganisms. 2023;11(9):2295.