RESEARCH Open Access

The effects of kefir drink on liver aminotransferases and metabolic indicators in patients with nonalcoholic fatty liver disease: a randomized controlled trial

Farzaneh Mohammadi^{1,2}, Nadia Razmjooei^{1,2}, Mohammad Ali Mohsenpour^{1,2}, Mohammad Ali Nejati³, Mohammad Hassan Eftekhari² and Naimeh Heiazi^{2*}

Abstract

Background and aim Probiotics play an important role in the control and treatment of non-alcoholic fatty liver disease (NAFLD). Kefir drink is a fermented beverage and has indicated some beneficial health effects. The aim of this study was to evaluate the effects of kefir drink on liver aminotransferases, anthropometric indices, glycemic index, lipid profile, blood pressure (BP), high sensitivity C-reactive protein, and malondialdehyde in patients with NAFLD.

Methods In an 8-week randomized clinical trial, 80 patients with NAFLD were randomized into two groups of 40. After a 2-week run-in period, the groups received a dietary plan and dietary plan plus a cup of kefir drink twice a day (500 cc/d), respectively. Also, demographic, anthropometric, laboratory, BP, dietary intake, and physical activity assessments were analyzed before and after the intervention.

Results At last, seventy-two participants completed the study. No significant difference in changes in BP, anthropometric indices, and laboratory data (P > 0.05) except HDL-C (P = 0.02) and fat-free mass (P < 0.001) was observed between the two study groups.

Conclusion Based on the results, Drinking 500 cc/d kefir beverage had no significant effect on liver aminotransferases and metabolic indicators, except for HDL-C and fat-free mass in patients with NAFLD.

Trial registration IRCT20170916036204N6 (2018/08/03).

Keywords Non-alcoholic fatty liver disease (NAFLD), Metabolic dysfunction-associated fatty liver disease (MAFLD), Kefir, Liver aminotransferase, Metabolic indicator

*Correspondence:

Najmeh Hejazi

najmehhejazi@gmail.com

¹Student Research Committee, School of Nutrition and Food Sciences,

Shiraz University of Medical Sciences, Shiraz, Iran

²Department of Clinical Nutrition, School of Nutrition and Food Sciences,

Shiraz University of Medical Sciences, Shiraz, Iran

³Department of Internal Medicine, Gastroenterohepatology Research

Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Mohammadi et al. BMC Nutrition (2025) 11:3 Page 9 of 11

The effects of kefir drink on hs-CRP

Since inflammatory conditions are one of the main stimuli of damage to the hepatocytes and predispose them to the progression of the disease to fibrosis [57], control and mitigation of inflammation are essential in the treatment process of NAFLD patients. In the present study, hs-CRP was measured as an inflammatory marker. Although the intervention with kefir reduced the level of hs-CRP, this change was not statistically significant. Consistent with the present study, probiotic supplementation alone did not affect hs-CRP, but hs-CRP was significantly reduced only in the group that was supplemented with probiotics and prebiotics [12]. On the other hand, some prior studies with the intervention of probiotics in different patients resulted in a reduction in hs-CRP level [58, 59]. The non-significant decrease in hs-CRP in our study may be due to different combinations of probiotics, the short study period, or the low-grade inflammatory status of participants.

In conclusion, the reason for the lack of effect of kefir on some parameters and the reason for the difference in results between studies can be attributed to the differences in individual microbiota, study duration, and dose of interventions. Therefore, it is suggested that future studies be conducted by measuring the amount of individual microbiota with different doses of probiotic strains.

Limitations

Due to the limitations of this study, such as the short duration of the study, small sample size, baseline nutritional differences, lack of blindness, and lack of measurement of the fatty liver using non-invasive methods, it is suggested that studies should be conducted in the future in accordance with these limitations.

Conclusion

Drinking 500 cc/d kefir beverage in addition to a balanced, restricted-energy diet may increase the HDL-C level and fat-free mass in NAFLD patients, so more studies are recommended on this issue.

Abbreviations

NAFLD Non-alcoholic fatty liver disease

BP Blood pressure

hs-CRP High sensitivity C-reactive protein

MDA Malondialdehyde

HDL-C High-density lipoprotein cholesterol NASH Non-alcoholic steatohepatitis

MetS Metabolic syndrome DM Diabetes mellitus HTN Hypertension ALT Alanine transaminase AST Aspartate transaminase BMI Body mass index TC Total cholesterol TG Triglyceride Fasting blood sugar FBS

LDL-C Low-density lipoprotein cholesterol
TBARS Thiobarbituric acid reactive substances

IR Insulin resistance

HOMA-IR Homeostasis model assessment of insulin resistance

WC Waist circumference

BIA Bioelectrical impedance analysis

IPAQ International physical activity questionnaire

MET Metabolic equivalent

STAT 3 Signal transducer and activator of transcription 3

p-JAK 2 Phosphorylated Janus kinase 2 p-STAT 3 Phosphorylated STAT 3 CPT-1 Carnitine palmitoyltransferase-1

SREBP-1 Sterol regulatory element-binding protein 1

Acetyl-CoA carboxylase

PPAR-α Peroxisome proliferator-activated receptor alpha

FABP4 Fatty acid-binding protein 4

IL-6 Interleukin 6MCP-1 Monocyte chemoattractant protein 1

GLP Glucagon-like peptide

GIP Gastric inhibitory peptide
ACE Angiotensin-converting enzyme

Acknowledgements

ACC

The results of this study were parts of the student thesis that were financially supported (grant no #13759) by the Vice Chancellery of Research and Technology in Shiraz University of Medical Sciences, Shiraz, I.R. Iran. The authors sincerely thank the staff and patients of Motahari Fatty Liver Clinic (Shiraz, Iran). The authors would also like to thank Shiraz University of Medical Sciences, Shiraz, Iran, and also the Center for Development of Clinical Research of Nemazee Hospital and Dr. Nasrin Shokrpour for editorial assistance.

Author contributions

FM: formal analysis, investigation, methodology, writing – original draft, writing – review & editing. NR: conceptualization, data curation, investigation, methodology, project administration, writing – review & editing. MAM: formal analysis, investigation, methodology, writing – review & editing. MAN: investigation, methodology, project administration, writing – review & editing. MHE: investigation, methodology, project administration, writing – review & editing. NH: conceptualization, methodology, project administration, supervision, writing – review & editing.

Funding

This study was financially supported (grant no # 13759) by the Vice Chancellery of Research and Technology at Shiraz University of Medical Sciences, Shiraz, I.R. Iran.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Shiraz University of Medical Sciences, Shiraz, Iran (IR.SUMS.REC.1397.107). The study was also conducted following the Helsinki Declarations of Ethics. The informed consent form was completed for all the patients.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 28 July 2024 / Accepted: 27 December 2024

Published online: 07 January 2025