ORIGINAL ARTICLE

https://doi.org/10.5653/cerm.2024.07794 pISSN 2233-8233 • eISSN 2233-8241 Clin Exp Reprod Med [Epub ahead of print]

Does coenzyme Q10 protect testicular function and spermatogenesis in rats receiving levofloxacin-containing therapy?

Rouhollah Nazari¹, Elham Aliabadi¹, Fatemeh Karimi^{1,4}, Narges Karbalaei^{2,4}, Hossein Mirkhani³, Saied Karbalay-Doust^{1,4}

Departments of ¹Anatomy, ²Physiology, ³Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz; ⁴Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Objective: Levofloxacin (LVFX), a fluoroquinolone antibiotic, is used in the treatment of urogenital tract diseases affecting the reproductive system. This study aimed to examine the protective effects of coenzyme Q10 (CoQ10) against LVFX-induced side effects using stereological methods.

Methods: Eighty rats were divided into eight groups: control (distilled water), CoQ10 (10 mg/kg/day), and low dose (25 mg/kg/day), medium dose (50 mg/kg/day), and high dose (100 mg/kg/day) of LVFX (low dose [LD]-LVFX, medium dose [MD]-LVFX, and high dose [HD]-LVFX) with or without CoQ10 administration. Treatments were performed daily for 4 weeks. Sperm parameters, serum testosterone levels, testicular oxidative stress markers, and testicular histology were evaluated.

Results: Sperm count, motility, normal morphology, and viability, as well as serum testosterone levels, were reduced, while malondialdehyde concentrations increased in MD-LVFX and HD-LVFX treated animals compared to controls. MD-LVFX and HD-LVFX treatments produced a 6% to 56% reduction in the volumes, lengths, and diameters of seminiferous tubules and their epithelium, whereas the interstitial tissue volume increased by 43% to 53% in these groups. The numbers of spermatogonia, spermatocytes, spermatids, Sertoli cells, and Leydig cells were reduced by 23% to 76% in animals treated with MD-LVFX and HD-LVFX compared to controls. Notably, all changes observed in the rats receiving CoQ10 were similar to those in the control group, and although most parameters decreased in animals that received LD-LVFX, the differences were not statistically significant relative to controls.

Conclusion: LVFX treatment for 28 days, regardless of dose, adversely affected sperm parameters and testicular tissue. CoQ10 exhibited a protective effect by mitigating the structural and functional impairments induced by LVFX.

Keywords: Coenzyme Q10; Levofloxacin; Rat; Spermatogenesis; Stereology

Received: December 14, 2024 · Revised: February 26, 2025 · Accepted: March 8, 2025

Corresponding author: Saied Karbalay-Doust

Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz 71348-45794, Iran

Tel: +98-713-2304372 Fax: +98-713-2304372 E-mail: karbalas@sums.ac.ir

Co-corresponding author: Fatemeh Karimi

Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Zand Ave., Shiraz 71348-45794, Iran

Tel: +98-713-2304372 Fax: +98-713-2304372 E-mail: karimi_fa@sums.ac.ir

*The study was financially supported by grant No. 24624-23-03-1401 by Shiraz University of Medical Sciences, Shiraz, Iran.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Infertility is a global health issue that affects both men and women of reproductive age. It remains one of the major challenges in modern medicine. Male infertility, which accounts for approximately half of all infertility cases, is a disorder of the reproductive system. Male infertility may result from endocrine disorders, infections, physical damage, exposure to toxic substances, medication side effects, or idiopathic causes [1]. Additional contributing factors include sleep deprivation, environmental pollution, elevated scrotal temperature, and increased levels of reactive oxygen species (ROS) [2]. These factors negatively impact sperm quality, and many cases of male infertility are linked to sperm disorders [1]. Certain therapeutic drugs may

et al. [12], Eid et al. [13], and Iftikhar et al. [10] further indicate that CoQ10 prevents testicular tissue alterations in rats exposed to methotrexate, cadmium chloride, cyclophosphamide, and bisphenol A. Based on our findings, CoQ10 prevented histological changes in the seminiferous tubules, interstitial tissue, and cell numbers in LVFX-treated rat testes, most likely due to its ability to mitigate oxidative stress.

These results are consistent with those reported by other researchers, who showed that CoQ10 could mitigate the unfavorable changes induced in rat testis tissue after exposure to free radicals by inhibiting oxidative stress [10-14].

The current study confirmed that treating rats with MD-LVFX (50 mg/kg/day) and HD-LVFX (100 mg/kg/day) for 4 weeks induced testicular toxicity. The reduction in sperm parameters appears to result from a decline in the germinal epithelium volume following LVFX exposure. The rat testis is composed primarily of seminiferous tubules separated by interstitial tissue containing blood vessels and Leydig cells. Damage to the seminiferous tubules leads to reductions in their length, diameter, and volume, while degeneration of the seminiferous epithelium reduces spermatogenic and Sertoli cell numbers—a finding consistent with reports by Ahmadi et al. [7] and Zaki et al. [6]. Sertoli cells support spermatogenic cells and facilitate spermatogenesis; thus, their reduction likely contributes to the decline in spermatogenic cell numbers. Furthermore, an increase in connective tissue may explain the observed reduction in Leydig cells, as LVFX has been shown to cause Leydig cell damage and interstitial edema [6,7]. Oxidative stress, evidenced by elevated MDA levels, may also contribute to these effects [10-14].

In conclusion, LVFX treatment disrupts testicular tissue and function in rats, whereas CoQ10 ameliorates LVFX-induced impairments in sperm parameters, serum testosterone, MDA levels, and testicular histology. Therefore, CoQ10 may be a suitable dietary supplement to prevent testicular disorders and reduce fertility problems associated with LVFX treatment in animals. Further preclinical and clinical studies in humans are needed to determine whether CoQ10 supplementation can protect testicular tissue in patients receiving LVFX.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This work was conducted at the Histomorphometry and Stereology Research Center of Shiraz University of Medical Sciences, Shiraz, Iran. This study is part of the thesis written by Rouhollah Nazari and

was financially supported by the Research Vice-Chancellor of Shiraz University of Medical Sciences (approval No. 24624-23-03-1401). We gratefully acknowledge the Center for Development of Clinical Research of Nemazee Hospital and Prof. Nasrin Shokrpour for their editorial assistance.

ORCID

Rouhollah Nazari https://orcid.org/0000-0002-7642-7516 Fatemeh Karimi https://orcid.org/0000-0001-6805-277X Saied Karbalay-Doust https://orcid.org/0000-0003-1071-1730

Author contributions

Conceptualization: EA. Methodology: NK, HM, SKD. Formal analysis: RN, EA, FK, NK, HM, SKD. Data curation: SKD. Funding acquisition: SKD. Project administration: FK, NK, SKD. Visualization: SKD. Software: RN, FK.NK, SKD. Validation: EA. Investigation: RN. Writing-original draft: SKD. Writing-review & editing: RN, EA, FK, NK, HM, SKD. Approval of final manuscript: RN, EA, FK, NK, HM, SKD.

References

- 1. Podgrajsek R, Hodzic A, Stimpfel M, Kunej T, Peterlin B. Insight into the complexity of male infertility: a multi-omics review. Syst Biol Reprod Med 2024;70:73-90.
- Abad Paskeh MD, Babaei N, Entezari M, Hashemi M, Doosti A. Protective effects of coenzyme Q10 along with Fe2O3 nanoparticles on sperm parameters in rats with scrotal hyperthermia: effects of CoQ 10 and Fe2O3 nanoparticles on sperm parameters. Galen Med J 2022;11:1-7.
- **3.** Ding J, Shang X, Zhang Z, Jing H, Shao J, Fei Q, et al. FDA-approved medications that impair human spermatogenesis. Oncotarget 2017;8:10714-25.
- 4. El-Demerdash FM, Ahmed MM, Baghdadi HH. Punica granatum peel extract modulates levofloxacin-induced oxidative stress and testicular damage in rats. Tissue Cell 2023;85:102227.
- Zobeiri F, Sadrkhanlou RA, Salami S, Mardani K. Long-term effect of ciprofloxacin on testicular tissue: evidence for biochemical and histochemical changes. Int J Fertil Steril 2013;6:294-303.
- 6. Zaki NF, Orabi SH, Abdel-Bar HM, Elbaz HT, Korany RM, Ismail AK, et al. Zinc oxide resveratrol nanoparticles ameliorate testicular dysfunction due to levofloxacin-induced oxidative stress in rats. Sci Rep 2024;14:2752.
- 7. Ahmadi R, Ahmadifar M, Safarpour E, Vahidi-Eyrisofla N, Darab M, Eini AM, et al. The effects of levofloxacin on testis tissue and spermatogenesis in rat. Cell J 2016;18:112-6.