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Abstract: Breast milk (BrM) is not only a nutrition supply but also contains a diverse population
of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics
of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and
capable of self-renewal and differentiation to other cells. In this review, we have compared differ-
ent characteristics such as CD markers, differentiation capacity, and morphology of stem cells de-
rived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly
(WIMSC), and human adipose tissue (HADMSC). The literature review revealed that human breast
milk-derived stem cells specifically express a group of cell surface markers, including CD14,
CD31, CDA45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106,
CD146, and CD166, were identified which were common in the four sources of stem cells. WIM-
SC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ecto-
derm, and endoderm cell lineages. The ability of hBr-MSCs in differentiation into the neural stem
cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these
cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from
the commonly used sources, such as bone marrow, requires invasive procedures. Although autolo-
gous breast milk-derived stem cells are an accessible source for women who are in the lactation pe-
riod, breast milk can be considered a source of stem cells with high differentiation potential with-
out any ethical concern.
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1. INTRODUCTION

Breast milk (BrM) is not just a nutrition supply, it also
contain a wide range of bioactive molecules, such as hor-
mones, growth factors, cytokines, and antioxidants, involved
in the normal development of the offspring. BrM also con-
tains a diverse population of cells such as lactocytes, my-

some tissues such as the brain, spleen, liver, and lymph
nodes [1, 3]. Although extensive research has been carried
out on the field of breast milk stem cells, the source and ori-
gin of multipotent cells found in breast milk are still not com-
pletely addressed.

Several studies have shown that BrM contains a group of

oepithelial cells, progenitor cells, and stem cells [1-3]. The
cellular composition of human milk is dynamic, and the pro-
portion of different cell types can be changed by many fac-
tors, such as the stage of lactation, health, and infant feed-
ing. Cells in the BrM include probiotic bacteria, immune
cells, desquamated epithelial cells as well as stem cells [2].
Generally, BrM cells are categorized as blood-derived and
breast-derived cells, and in both of these sources, a small
subpopulation of progenitor or stem cells has been identi-
fied. Interestingly, some of these cells are able to pass
through the infant’s gastrointestinal tract and populate in
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cells expressing typical features of stem cells. For example,
it has been shown that some of them express mammary stem
cell and epithelial progenitor markers such as a6 integrin
(CD49f1) and p63 [4, 5]. Evidence also indicates that these
cells are multipotent [5]. These cells have the capability of
self-renewal, and under certain conditions, can undergo dif-
ferentiation towards at least two types of epithelial lincages,
milk proteins-producing CK18+ luminal cells and CK14+
myoepithelial cells [6].

Evidence indicates that a mesenchymal stem cell-like
population exists in BrM. It has been estimated that up to
6% of the cells in human milk have the characteristics of
MSCs [7]. MSCs are self-renewing, highly proliferative, and
potentially differentiating cells with adherent growing fea-
tures [8]. This population was positive for MSC surface
markers such as CD44, CD29, SCA-1 and negative for
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CD33, CD34, CD45, CD73, confirming their identity as
MSC:s. Interestingly, the finding revealed the presence of an
MSC-like population in human milk with multi-lineage dif-
ferentiation potential [9]. Our research group has previously
shown that isolated stem cells from human breast milk are
able to differentiate into hepatocytes [10], neural cells [11],
adipocytes as well as osteoblast. Based on our studies, hu-
man breast milk contains a group of cells expressing endo-
dermal markers such as albumin. Besides, we have demons-
trated that a subpopulation of these cells expresses some em-
bryonic stem cell markers such as TRA-60-1, Oct4, Sox2,
and Nanog, indicating high pluripotency of these cells. We
have also reported that a small population of breast milk-
derived stem cells express embryonic cell markers such as
Nanog, OCT4, Sox2, SEEA4, and TRA 1-60/81 [12]. The
presence of multipotent stem cells in human milk suggests
that breast milk could be an alternative source of stem cells
for autologous stem cell therapy, although the application of
these cells in regenerative medicine needs to be more clari-
fied.

Taking all together, breast milk is a valuable source of
cell population displaying many of the properties typical of
stem cells. In this review, we made an attempt to compare
different characteristics such as CD markers, differentiation
capacity, and morphology of stem cells derived from breast
milk with bone marrow, Wharton jelly, and adipose tissue.
This review outlines unique features of progenitor cells from
breast milk.

Rahmani-Moghadam et al.

2. MESENCHYMAL STROMAL/STEM CELL MARK-
ERS

A group of cell surface molecules has been suggested as
markers for Human Breast Milk MSC (hBr-MSC), as pre-
sented in Table 1. As shown in the Table, the expression pat-
terns of the CD markers are categorized into four levels,
highly expressed (>75%), low expressed (<25%), non-ex-
pressed, and expressed (positive), that refer to data from
studies where the frequency of the positive cells was not re-
ported. The markers which are reported to be highly ex-
pressed in hBr-MSC include CD13 [13], CD14 [13, 14],
CD9%4d [13], CD54 [13], CD86 [13], CD140b [13, 15],
CD166 [13] and CD271 [12, 16]. However, we found contra-
dictory reports about the expression level of CD29 [7, 13,
17-20], CD34 [7, 12, 13, 16-19], CD44 [7, 11-17, 19, 21,
22], CD45 [7, 12-14, 18, 19], CD49f [18, 20, 23-25], CD73
[7, 12-14, 16, 19, 25], CD105 [11-16, 19, 22], CD117 [13,
15, 18, 19] and CD133 [11-13, 16, 18, 25]; some reports
claimed these are highly expressed in hBr-MSC, while the
others indicate low expression or lack of expression of the
mentioned markers. This contradiction may be due to isolat-
ing the cells by different methods or from different stages of
lactation (Table 2). As CD marker expression pattern is dif-
ferent in situ and isolated mesenchymal stem cells cultured
in vitro [26], fresh versus cultured hBr-MSC may also show
some differences in CD marker profile. In most of the
studies that reported the CD marker expression pattern,

Table 1. Comparison of the CD marker expression in WIMSC, hBMSC, hADMSC, and hBr-MSC. CD makers are expressed at least

in one of the four sources of stem cells.

Human Bone Marrow Human Adipose .
CD Marker Warg);]l‘.;;lslgv[ SC MSC MSC Human(l]?l;i':x;;évlcl)lk Msc References
J (hBMSC) (hADMSC)
WjMSC: [27]
Ch4 * . . Non-Reported hBMSC: [28] hADMSC: [28-31]
WjMSC:[32] hBMSC [33]
CD7 + - - Non-Reported hADMSC:[34]
+
WjMSC:[35] hBMSC:[36]
0, -
CD9 + + ' (>75%) ' Non-Reported hADMSC: [31, 37-40]
High expression
+ + WjMSC: [35, 41-47] hBMSC:
CDI10 (>75%) + (>75%) - [36, 48-50] hADMSC: [29, 34,
High expression High expression 38, 51-53] hBr-MSC:[18]
WjMSC: [35, 41-45, 47, 54-63]
+ + + + hBMSC: [28, 31, 36, 48-50, 57,
CD13 (>75%) (>75%) (>75%) (>75%) 64-711 hADMSC: [28, 29, 31, 34,
High expression High expression High expression High expression 38,51, 53, 65, 67, 72-77] hBr-M-
SC:[13]
WjMSC: [32, 41, 45-47, 57, 59,
N 60, 63, 78-88] hBMSC: [28, 31,
33,48, 49, 57, 64-66, 68, 69, 81
B B B o , 48,49, 57, , 68, 69, 81,
CD14 Hi }E>)7(5?) ‘o 86, 88-109] hADMSC: [28, 29,
§4 expressio 31,34, 38,65, 73, 75, 76,
110-117] hBr-MSC: [13, 14]
+ WjMSC: [118] hBMSC: [49]
CD24 + . + 25%)>) hADMSC: [119] hBr-MSC: [18,
Low expression 20]
WjMSC: [120] hBMSC: [104]
CD25 + - - Non-Reported hADMSC: [31, 34]

(Table 1) contd....
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Human Bone Marrow

Human Adipose

CD Marker Warton'J elly MSC MSC MSC Human Breast Milk MSC References
(WIMSC) (hBMSC) (hADMSC) (hBr-MSC)
+
CD26 Non-Reported + (>75%) Non-Reported hBMSC: [121] hADMSC: [53]
High expression
WjMSC: [32, 35, 41, 42, 45-47,
+ 54-60, 63, 78, 81, 85, 88,
(>75%) 122-132] hBMSC: [28, 31, 33,
+ + + High expression 49, 57, 64-66, 68, 71, 81, 88-90,
CD29 (>75%) (>75%) (>75%) [7,13] 92,94, 98,99, 101, 102, 105,
High expression High expression High expression 25%)>) 108, 133-139] hADMSC: [30, 31,
Low expression 38, 40, 51, 53, 65, 72-75,77, 111,
[18,19] 113, 140-153] hBr-MSC: [7, 13,
17-20]
WjMSC: [41, 43, 45, 47, 54, 57,
59, 60, 81, 84, 85, 154, 155] hBM-
SC: [28, 48-50, 57, 65, 81, 89, 92,
CD31 - - - + 99, 103-105, 108, 136, 156]
hADMSC: [31, 37-39, 65, 67, 72,
73,75,77,103, 111, 141, 142,
157-165] hBr-MSC: [13, 25]
WjMSC: [32, 41, 43-47, 54-57,
N 59, 60, 63, 78-80, 82-86, 88,
+ 122-130, 169-180] hBMSC: [31,
(29, 38, 157-160, 166] 25%)>) 33, 48-50, 57, 65, 66, 68-70, 86,
Low expression 88-109, 133, 134, 136-139,
D34 ) ) [31, 34,37, 39, 65, 72-74, [13, 18, 19] 181-1911 hADMSC: [29, 31, 34,
76,77, 110-113, 116, 117,
140-142. 145. 149 - 37-39, 65, 72-74, 76, 77,
163-165’ 167, IGSi [7, 12, 16] 110-113, 116, 117, 140-142, 145,
Y 149, 157-160, 163-168] hBr-M-
SC: [7, 12, 13, 16, 18, 19]
+
WjMSC: [192] hBMSC: [49, 50,
CD36 * - 73%) Non-Reported 98] hADMSC: [29, 31, 53]
High expression
WjMSC: [32, 193, 194] hBMSC:
CD40 - - + + [104] hADMSC: [53] hBr-MSC:
[195]
CD4la Non-Reported + - Non-Reported hBMSC: [196] hADMSC:[30]
WjMSC:[32, 35, 41-43, 45-47,
57-60, 63, 78, 81, 85, 88,
N 122-125, 127, 128, 130, 169-173,
175, 176, 180, 197, 198] hBMSC:
7, 11_21’751;;)21’ 22] [28, 31, 33, 48, 49, 57, 64-69, 71,
+ + + High expression 81, 88-90, 92, 94, 98-106, 108,
CD44 (>75%) (>75%) (>75%) [7.11, 13, 15, 16] 109, 133, 134, 136-139, 156, 182,
High expression High expression High expression ’ 2’5%’)>) ’ 185, 186, 188, 191] hADMSC:
Low expression [31, 34, 37-39, 51, 53, 65, 67,
[19] 72-75,77,111, 113, 114,
140-142, 144, 145, 151, 153, 160,
162, 164, 167, 199-204] hBr-M-
SC: [7, 11-17, 19, 21, 22]
WjMSC:[32, 41, 43-47, 54-57,
59, 60, 63, 78-86, 88, 122,
125-128, 130, 171, 173-175,
177-180, 197] hBMSC: [28, 31,
+ 33, 48-50, 57, 65, 66, 68-70, 81,
CD45 - _ B [12-14, 19] 86, 88-109, 134, 137-139, 156,
- 181-183, 185, 186, 188-191]
[7, 18] hADMSC: [28, 31, 34, 37-39, 51,

65, 67,72-77,110-114, 116, 117,
141, 142, 144, 145, 157, 164,
167, 168, 199, 201-203, 205-207]
hBr-MSC:[7, 12-14, 18, 19]

(Table 1) contd....
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Human Bone Marrow

Human Adipose

Low expression

CD Marker W“r:“’,:,‘.‘;;gyciwsc MSC MSC e S C) Msc References
J (hBMSC) (hADMSC)
+ +
CD47 Non-Reported (>75%) (>75%) Non-Reported hBMSC:[208] hADMSC:[53]
High expression High expression
WjMSC:[209] hBMSC: [98]
CD49 + + + Non-Reported hADMSC: [72]
+
WjMSC:[35] hBMSC: [210]
0, -
CD49a + + . (>75%) . Non-Reported hADMSC: [31, 53]
High expression
* * * WiMSC: [32, 35, 41, 45] hBM
CD49b (>75%) (>75%) (>75%) Non-Reported J. e AT g
. . . . . . SC: [33, 50] hADMSC: [30, 31]
High expression High expression High expression
+
WjMSC:[41] hBMSC: [98]
0, -
CDA49c + ' (>75%) ' + Non-Reported hADMSC: [31]
High expression
+
y (>75%)
+ 25%)>) Hich ex reossion + WjMSC: [32, 41, 45] hBMSC:
[41] Low expression gh eXp . [33, 49, 98, 104, 211] hADMSC:
CD49d [30, 205] (>75%)
- [33,211] 25%)>) High expression [30, 31, 38, 73, 142, 145, 164,
[32, 45] y o) gh exp 205] hBr-MSC: [13]
[49, 104] Low expression
’ [38, 73, 145, 164]
+ + WjMSC: [41, 63, 126] hBMSC:
CD49%¢ + (>75%) (>75%) Non-Reported [48, 66, 104] hADMSC: [30, 31,
High expression High expression 38,51, 53]
+
(>75%)
+ High expression WjMSC:[212] hADMSC: [30]
CD49f + (>75%) - [20] hBMSC: [48, 98] hBr-MSC: [18,
High expression 25%)>) 20, 23-25]
Low expression
[18]
+[31] hBMSC: [33, 50, 69, 104, 106]
CD50 Non-Reported - -[38] Non-Reported hADMSC: [31, 38]
+
+ o WjMSC:[122] hBMSC: [33]
CD51 High expression + ‘ (>75%) . Non-Reported hADMSC: [30, 31, 53]
High expression
+ WjMSC: [35, 46, 63, 174] hBM-
o + SC: [33, 48, 104, 213] hADMSC:
CD54 _T5%) * * High expression 38, 53, 77, 142, 152] hBr-MSC:
High expression [13]
[3;58] WiMSC: [35, 41, 45, 58] hBM-
CD56 i - - Non-Reported SC: [28, 100] hADMSC: [28, 34,
[41, 45] 38,73
+
WjMSC:[32] hBMSC:[104] [28,
0, -
CDs8 * * _T5%) Non-Reported 331 hADMSC: [28, 31, 53]
High expression
+ + WiMSC:[58] hBMSC: [98, 133]
CD59 + (>75%) (>75%) + hADMSC: [29, 38, 51, 53] hBr-
High expression High expression MSC: [214]
+
[30, 53] WjMSC:[58] hBMSC: [33]
CDol * * ; Non-Reported hADMSC: [30, 31, 53, 73]
[31,73]
+ .
CD62e (>75%) Non-Reported - Non-Reported WIMSC:[33] h%]])MSC' 31,38,
High expression
+ .
CD62P 25%)>) - - Non-Reported WIMSC: [215] hBMSC: [28, 33,

104] hADMSC: [30, 31]

(Table 1) contd....
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Human Bone Marrow

Human Adipose

CD Marker W“r:“’,:,‘.‘;zlslyciwsc MSC MSC e S C) Msc References
J (hBMSC) (hADMSC)
+ +
WjMSC: [215] hBMSC: [33, 48,
0 R ) -
CD62L 25%)>) . 25%)>) ) Non-Reported 104] hADMSC: [216]
Low expression Low expression
WjMSC:[54] hBMSC: [217]
CD63 + + + Non-Reported hADMSC: [31, 218]
WjMSC:[35, 179] hBMSC: [105]
CD68 + - + + hADMSC: [111, 219] hBr-
MSC:[17]
N +
[130] o WjMC:[123, 130] hBMSC: [94,
cp71 - 25%)>) * Non-Reported 104] hADMSC: [31, 53, 73, 164]
Low expression
[123]
WjMSC:[32, 35, 43, 45-47,
54-60, 63, 79-85, 88, 124-128,
130, 171, 172, 175, 177, 178,
+ 180] hBMSC: [28, 36, 48, 49, 57,
+ + 25%)>) 65-67, 70, 81, 88-92, 95-97, 99,
Low expression 100, 102, 103, 106, 107, 134
0, 0, > s ) ) E E)
cb73 - i }f>)7(5rA’) ‘on i }E>Z{5f) ion [14, 19, 25] 139, 156, 181, 183, 185-191, 211]
£l CXpressio & eXpressio . hADMSC: [31, 37, 39, 52, 53, 65,
[7, 12,13, 16] 75,103, 110-112, 114, 116, 117,
141, 143, 160, 162, 166, 168,
200, 202, 204-207, 220-223] hBr-
MSC: [7, 12-14, 16, 19, 25]
hBMSC: [106] hADMSC: [224,
CD 83 Non-Reported - + - 225] hBr-MSC:[13]
WjMSC: [32, 79, 193, 194] hBM-
CD86 - - - + SC: [104, 106] hADMSC: [116]
hBr-MSC: [13]
WjMSC: [35, 41-43, 45-47,
54-60, 63, 78-80, 83-86, 88,
124-128, 171-178, 180, 197]
hBMSC: [28, 31, 33, 48, 49,
65-71, 86, 88-92, 94-104, 106,
+ + + + 107, 109, 134, 136, 137, 139,
CD 90 75%) (>75%) 75%) 25%)>) 156, 181-183, 185-191, 211]
High expression High expression High expression Low expression hADMSC: [28, 30, 31, 34, 37, 39,
51-53, 65, 72,73, 75, 103,
110-114, 116, 117, 140, 142, 153,
157, 159, 160, 163, 166, 168,
200, 201, 204-207, 220-223, 226]
hBr-MSC: [11-14, 16, 19, 25]
+
CD95 + Non-Reported >75%) Non-Reported WjMSC:[123] hADMSC: [53]
High expression
CD102 - . Non-Reported + Non-Reported WjMSC: [215] hADMSC: [31]
Low expression
WjMSC:
[32, 35, 42, 45-47, 54-60, 63,
79-86, 88, 122-130, 169-178,
180, 197, 198] hBMSC: [28, 31,
+ + 36, 48, 49, 57, 64-68, 70, 71, 81,
+ (>75%) (<25%) 86, 88-92, 95-105, 107-109, 134,
High expression Low expression 136, 138, 139, 156, 181-183
0 » 158,159, 156, >
CD105 * Hi ﬁfféision 25%)>) [11, 13-16, 19, 22] 185-191, 211, 213] hADMSC:
£ exXp Low expression - [28, 31, 38, 52, 53, 65, 72-76,
[73, 157] [12, 16] 103, 110-114, 117, 140-144, 148,

153, 157, 159, 160, 166, 168,
199-201, 204-207, 220, 222, 223,
226, 227] hBr-MSC: [11-16, 19,

22]

(Table 1) contd....
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Human Bone Marrow

Human Adipose

CD Marker W“r:“’,:,‘.‘;zlslyciwsc MSC MSC e S C) Msc References
J (hBMSC) (hADMSC)
+ WjMSC: [57, 59, 60, 85, 88, 125,
+ 169, 170, 180, 197] hBMSC: [28,
[57, 59, 60, 85, 169, 170, |12& 57=19(;‘6= 918561]02, 105, " 72 64 + 48,50, 57,71, 88, 89, 94, 98,
CD106 197] ’ T (<25%) 102, 104-108, 138, 156, 213]
- B - Low expression hADMSC: [30, 31, 72, 73, 77,
[48, 50, 71, 88, 89, 104, [30, 73, 77, 142, 145] )
[88, 125, 180] 107, 108, 138, 213] 142, 145, 164] l;]z]r-MSC. [11,13,
* +
0,
i h(>eZ(5r/glsion [31, 39, 227] 13 1+5 19] WjMSC: [32, 35, 43-45, 61, 63,
[%’5 42’ >8] (<25%) (;75(;/) 88, 118, 180, 228, 229] hBMSC:
CD117 (;25’0/) ) Low expression High ex r;ssion [48-50, 88, 98, 101, 213] hADM-
Low expré’ssion [39] g [1‘;] SC: [30, 31, 37, 39, 72, 77, 111,
[63, 180, 229] - ) 151, 226, 227] hBr-MSC: [13, 15,
T [30,37,72,77, 111, 151, (18] 18, 19]
[32, 43, 45, 61, 88, 118] 226]
CD120a Non-Reported - + Non-Reported hBMSC: [33’[31 ? ]4 1hADMSC:
CD120b Non-Reported - + Non-Reported hBMSC: [104] hADMSC: [31]
+ WjMSC: [180] hBMSC: [104]
CD123 - (<25%) - - hADMSC: [31] hBr-MSC: [12,
Low expression 16]
CD124 Non-Reported + - Non-Reported hBMSC: [94] hADMSC: [31]
+ + WjMSC: [32, 35, 54, 56, 125]
CDI33 [35] ) ) [11,13,18,25] hBMSC: [33, 49, 70, 102, 188]
- - hADMSC: [30, 31] hBr-MSC:
[32, 54, 56, 125] [12, 16] [11-13, 16, 18, 25]
WjMSC:[63] hBMSC: [230]
CD140a - + + Non-Reported hADMSC: [30, 31]
+
i 0 + hBMSC: [231] hADMSC: [53]
CD140b Non-Reported * . (>75%) . High expression hBr-MSC: [13, 15]
High expression
+ + WjMSC: [84, 88, 124, 171, 172,
[88, 171, 197] [53] 1971 hBMSC: [65, 71, 88, 92, 98,
CD146 : * ; * 99,107, 190, 191, 211] hADM-
[84, 124, 172] [31] SC: [31, 53] hBr-MSC:[12]
+ + .
CD147 + (>75%) (>75%) Non-Reported WIMSC: [232] hBMSC' [98]
. . . . hADMSC: [53]
High expression High expression
CD163 - + Non-Reported Non-Reported WjMSC:[179] hBMSC: [233]
CD164 + Non-Reported + Non-Reported WJMSC:[]M]S?]A DMSC: 31,
WjMSC: [32, 35, 45, 47, 57-60,
63, 124, 126, 130, 171, 197] hBM-
+ + + + SC: [28, 36, 48,49, 57, 68,71,
CD166 (>75%) (>75%) (>75%) (>75%) 90, 98, 99, 101, 104, 106, 107,
High expression High expression High expression High expression 135,137, 139, 181, 182, 191]
hADMSC: [28, 31, 38, 51, 53, 72,
74-77, 141, 142] hBr-MSC: [13]
CD200 Non-Reported . * . + Non-Reported hBMSC: [211] hADMSC: [75]
High expression
+ : ;3] - WiMSC: [54, 124, 198] hBMSC:
CD271 - (>75%) ) (>75%) [98, 190, 191] hADMSC: [31, 53]
High expression [31] High expression hBr-MSC: [12, 16]
CD276 Non-Reported + + Non-Reported hBMSC: [208] hADMSC: [31]

hBr-MSCs were collected from a wide range of times. There-
fore, understanding the expression profile of CD markers in
different stages of lactation needs more investigation.

On the other hand, we have listed the markers with low
expression level in hBr-MSC (Table 1) including CD24 [18,

20], CD90 [11-14, 16, 19, 25], CD106 [11, 13, 16]. Finally,
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Table 2. Diffrerent methods from the isolation of cell of breast milk for charactriztion.
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Refrences Isolation Conditions Freshly Isolate/Cultured
[7] Full term, from day 0 until day 5 post-delivery after culture (2 to 6 passages)
[11] From various stages of lactation after culture
[12] Full term, mother age 2p2(:sif)dzleie\1/res;yfrom day 1 to 6 months Fresh (without passages)
[13] Full term, mothers age 2173213::;& from day 3 to day 7 post- Fresh (without passages)
[14] From 2 days to 2 months post-delivery after culture (Three weeks after isolation)
[15] Every day from 0 to 7 post-delivery day after culture
[16] Full term, from day 0 until month 6 post-delivery Fresh (without passages)
[17] From various stages of lactation after culture
[18] From various stages of lactation Fresh (without passages)
B s
[24] From various stages of lactation Fresh (without passages)

it has been reported that CD10, CD83, and CD123 are not
expressed in hBr-MSC.

Based on Table 1, the shared markers among the isolated
MSc from Warton Jelly (WIJMSC), human bone marrow
MSC (hBMSC), human adipose MSC (hADMSC) and hBr-
MSC are CD13, CD29, CD44, CD105, CD106, CD146 and
CD166. Importantly, the markers express just in hBr-MSC,
but not in the other MSCs, are CD14 [13, 14], CD31 [13,
25], CD45 [12-14, 19], and CD86 [13].

The review of the literature shows that CD9, CD49,
CD49a, CD49b, CD49¢c, CD49¢, CD51, CD 58, CD61,
CD63, CD71, and CD147 are expressing in the WIMSC,
hBMSC, hADMSC; however, these markers were not report-
ed to be expressed in hBr-MSC. This list could be helpful in
future studies for a more precise characterization of these
sources of cells.

Also, the literature review revealed that several markers
were negatively expressed or not reported to be expressed in
four sources of stem cells (Table 3) [234-239].

3. MORPHOLOGY OF STEM CELS FROM VARIOUS
SOURCES

The literature review shows that hBr-MSCs have a simi-
lar phenotype to fibroblasts [7, 12]. However, it has been re-
ported that the isolated cells initially contained an epithelial--
like cell population, and during the second week of culture,
the phenotype changes to typical slender fibroblast-like
cells. This morphological change has been suggested as a re-
sult of epithelial to mesenchymal transition [7]. Sani et al.
detected two cell populations in the cultures of isolated hBr-
MSCs, fibroblast-like and round cells. After 10£2 days, the
fibroblast-like cells were prominent cell types in the cultures
[12]. On the other hand, the morphology of most of the
WIMSCs and hBMSCs has been recorded as fibroblast-like
cells [240]. However, reports show that hADMSCs also con-
tains two cell population based on nucleus size and lectin re-
activity [241].

4. DIFFERENTIATION CAPACITY OF STEM CELLS
FROM VARIOUS SOURCES

It has been shown that a group of embryonic stem cell
(ESC) associated genes, such as Nanog, OCT4, Sox2,
SEEA4, and TRA 1-60/81 and KLF4, are expressed in a sub-
population of hBr-MSC [9, 11]. Furthermore, these cells
share some similarities in the phenotype, colony morpholo-
gy, and differentiating capability with ESCs [9, 242]. As
multipotent stem cells, hBr-MSCs have been differentiated
into all three primary germ layers, ectoderm, mesoderm, and
endoderm (Fig. 1). Furthermore, mesenchymal stem cell
markers have also been shown to be expressed in a subpopu-
lation of the cells derived from BrM [243]. Hence, due to
embryonic stem cell properties, hBr-MSCs may be greatly
able to differentiate toward neural cell lineages [244, 245],
including astrocyte [11], neuron [1, 9, 11], and oligodendro-
cyte [11].

A previous study showed that hBr-MSCs could differen-
tiate into the neural stem cells and neurons [11]. Both mam-
mary gland and nervous system originate from the same ori-
gin, ectoderm [246], and they share common regulatory path-
ways in the development. Besides, a subpopulation of hBr-
MSCs express nestin, which is a marker of neural progenitor
cells. Therefore, hBr-MSCs may be considered as a reliable
source for differentiation to the neural cell lineages [11].
The same differentiation potency toward neurons has been
shown in the isolated mesenchymal stem cells from human
adipose tissue [247-251], bone marrow [108, 138, 252-254],
and Wharton’s jelly [255-263]. In the case of bone mar-
row-originated stem cells, there are also reports indicating
that these cells can differentiate into the glial cell [108, 138].
Moreover, Wharton’s jelly-originated cells are shown to
have the potential to differentiate toward Schwann-cell
[256], oligodendrocytes [263], and auditory hair cells [255].

Differentiation of hBr-MSCs into mesoderm-originated
cells such as adipocytes [1, 7, 9, 12], chondrocyte [1, 7, 9,
264, 265], osteocyte [1, 7, 12], and cardiomyocytes [9, 266]
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Table 3. Comparison of the expression of CD markers which are negative or non-reported in WIMSC, hBMSC, hADMSC, and hBr-

MSC.
Human Bone Mar-| Human Adipose .
CD Marker Warg);,l.;;lsl}é;v[ SC row MSC MSC Human(l];’-l;iix;;évlcl)lk MSsC References
. (hBMSC) (hADMSC)
WjMSC: [32, 45, 84]
CD3 - - - Non-Reported hBMSC: [28, 48, 98, 183]
hADMSC: [28, 29, 34]
CDlla Non-Reported - - Non-Reported hBMSC: [104] hADMSC: [30, 31, 38, 201]
WjMSC: [47, 128, 178] hBMSC: [90, 98, 107, 185,
CDl11b - - - Non-Reported 186, 234] hADMSC: [30, 34, 38, 51, 75, 201, 220,
223]
CD15 Non-Reported - - Non-Reported hBMSC: [28] hADMSC: [28, 29, 31, 158]
CDl16 Non-Reported - - Non-Reported hBMSC: [28] hADMSC: [28, 34, 73, 152]
CD18 - Non-Reported - Non-Reported WjMSC:[47] hADMSC: [30, 38, 152]
WjMSC: [32, 80, 83, 128, 178, 181, 197, 235] hBM-
SC: [28, 48, 66,92, 98,107, 138, 181, 191]
CD19 - - - Non-Reported hADMSC:
[28,29,34,75,117,207,223]
CD33 ) ) ) ) WjMSC: [32, 41, 44, 47] hBMSC: [28] hADMSC:
[28, 34] hBr-MSC:[7]
WjMSC: [44, 57, 59, 60, 123, 174] hBMSC: [28, 33,
CD38 - - - Non-Reported 49, 50, 57] hADMSC: [29, 31]
CD79 - - Non-Reported Non-Reported WjMSC:[44] hBMSC: [90, 98]
CD79A - Non-Reported - Non-Reported WjMSC:[83] hADMSC:[236]
WjMSC: [32, 79, 193, 194] hBMSC: [103, 104, 106]
CD80 - - - Non-Reported hADMSC: [103]
CD95L Non-Reported - - Non-Reported hBMSC: [48] hADMSC: [151]
CD104 Non-Reported - - Non-Reported hBMSC: [28] hADMSC: [28, 31, 73]
CD115 - Non-Reported - Non-Reported WjMSC:[47] hADMSC: [31]
CD126 Non-Reported - - Non-Reported hBMSC: [237] hADMSC: [31]
CD127 Non-Reported - - Non-Reported hBMSC: [104] hADMSC: [31]
CD144 ) ) ) ) WjMSC: [169, 170, 172] hBMSC: [28, 49, 102]
hADMSC: [28, 67] hBr-MSC: [12]
CD235a ) ) ) Non-Reported WjMSC: [180, 238] hBl\2/1389(]3: [238] hADMSC: [238,

is also reported. We did not find any study which compares
the potency of the differentiation of hBr-MSCs with three
other cell sources. However, it has been shown that osteo-
genic differentiation in hBMSCs is higher than hADMSCs
[65]. Furthermore, quantitative analysis has shown that hBM-
SCs had better osteogenic and chondrogenic abilities, while
urine-derived stem cells (USCs) had superior adipogenic
and endothelial cell differentiation abilities than hBMSCs or
Placenta Decidua Basalis-derived stem cells (PDB-MSCs)
[267]. It has been claimed that hADMSCs have higher adipo-
genic differentiation potential than hBMSC [268].

WIMSCs are able to differentiate into mesoderm-origi-
nated cells. Several studies have reported the differentiation
potency of these cells into adipocytes [269, 270], chondro-
cyte [270-272], osteocytes [270, 273, 274], cardiomyocyte
[260, 275-277], Sertoli cell [138, 278], endometrial epithe-
lial cell (EEC), and endometrial stromal cell (ESC) [279].
Similarly, there are reports of the same potency for BMSCs,
including adipocyte [108, 138, 254, 280], chondrocyte [108,
138, 280], osteocyte [108, 138, 254, 280], cardiomyocyte

[281-283], skeletal myocytes, tendon cell [280], stromal
cells [138], and cells of visceral mesoderm [280]. Finally,
ADMSCs are able to differentiate toward adipocyte [103,
247, 248, 268, 284, 285], chondrocyte [103, 247, 248, 268,
285-287], osteocyte [103, 247, 248, 268, 284, 285,
287-290], cardiomyocyte [291, 292], and skeletal myocyte
[266, 286].

Finally, we also reviewed the potential differentiation of
these four sources of stem cells toward endoderm originated
cells. In a study, our team evaluated the differentiation poten-
tial of Br-MSCs into hepatocyte-like cells [10]. Based on the
results, hepatic nuclear factor, albumin, cytokeratin 18 and
19, cytochrome P2B6, glucose-6- phosphatase, and claudin
were expressed in the differentiated cells. Furthermore, func-
tional assays showed glycogen storage and omission of indo-
cyanine green; also, cell aggregate formation was observed
with the accumulation of the differentiated cells to form
spheroids. Differentiation of hBr-MSCs into the beta cell [9]
and hepatocyte [1, 9, 10] was also reported. Therefore, hBM-
SCs are also known as a promising source of beta-cells [133,
293-295] and hepatocyte [296].
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Fig. (1). Comparison of the differentiation capacity in four sources of WIMSC, hBMSC, hADMSC, and hBr-MSC into different cell lin-
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Differentiation of hADMSCs into various endoderm-o-
riginated cells has been reported in several studies, alpha
cell [297], beta-cell [295, 297], hepatocyte [249, 284, 296,
298, 299], and gamma cell [297]. The same reports exist
about Wharton's Jelly Derived Mesenchymal stem cells, be-
ta cells [133, 295, 300], and hepatocyte [170, 299, 301-307].
It was shown that WIMSC expresses a high level of tran-
scription factors involved in liver development. The produc-
tion of early hepatic markers has made Wharton’s jelly a
suitable source of hepatocyte differentiation compared to
hBMSC and hADMSC [303].

5. hBr-MSCs APPLICATIONS IN PRECLINICAL
AND CLINICAL TRIAL STUDIES

Given the novelty, there are few studies to treat a disease
or injury tissue using hBr-MSCs. Borhani-Haghighi et al.
conducted a preclinical study to investigate the therapeutic
effects of the hBr-MSC-conditioned medium in a rat model
of spinal cord injury. They showed that intrathecal adminis-
tration of the hBr-MSC-conditioned medium reduced apopto-
sis and inflammation at the site of injury and improved sen-
sory, motor, locomotor, and sensorimotor neurons in a rat
model of spinal cord injury [308]. This finding displays the
therapeutic capacity of hBr-MSC and their potential to re-
duce inflammation and tissue damage via secreted factors.

Also, the literature showed a few ongoing clinical trial
studies in this field. In phase 1 clinical trial, fresh breast
milk is injected intranasally to cure intraventricular hemor-
rhage in preterm infants. It has been suggested that fresh

breast milk can be considered a safe source of stem cells for
preterm patients suffering from intraventricular hemorrhage
[309]. In the other ongoing studies, the infants suffering
from necrotizing enterocolitis were fed with stem cell-rich
breast milk [310]. Not only hBr-MSC can be applied in re-
generative medicine, but it can also provide a non-invasive
source of stem cells for food engineering as it reduces
slaughtering animals and prevents the detrimental influence
of livestock production [311].

CONCLUSION

Human breast milk is a remarkable source of stem cells.
These cells have multilineage differentiation potential and
show mesenchymal and embryonic stem cells properties.
This literature review revealed that human breast milk-
derived stem cells were expressing specifically a group of
cell surface markers, including CD14, CD31, CD45, and
CD86. Importantly, a group of markers, CD13, CD29,
CD44, CD105, CD106, CD146, and CD166, were retrieved,
which are common in the four studied stem cells WIMSC,
hBMSC, hADMSC, and hBr-MSC.

The differentiation potential of these cells was also com-
pared. Based on the literature review, hBr-MSCs are potent-
ly able to differentiate toward the mesoderm, ectoderm, and
endoderm originated cells. The same ability has been report-
ed for the WIMSC, hBMSC, and hADMSC. The ability of
hBr-MSCs in differentiation toward the neural stem cells,
neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and
cardiomyocytes has made these cells a promising source of
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stem cells in regenerative medicine. Often, isolation of stem
cells from the commonly used sources, such as bone mar-
row, requires invasive procedures. Although autologous
breast milk-derived stem cells are an accessible source for
lactating women, breast milk is a non-invasive and abundant
source of stem cells, with high potential cells for differentia-
tion without any ethical concern. Several studies indicate
hBr-MSC have the potency to differentiation to a wide varie-
ty of cells; however, more studies are needed to further clari-
fy the characteristics of the differentiated cells and their func-
tionality.

LIST OF ABBREVIATIONS

BrM = Breast milk

MSC = Mesenchymal Stem Cell
hBr-MSC = Human Breast Milk MSC
WIMSC = Warton Jelly MSC

hBMSC = Human Bone Marrow MSC
hADMSC = Human Adipose MSC

ESC = Embryonic Stem Cell

USC = Urine-derived Stem Cells
PDB-MSC = Placenta Decidua Basalis-derived Stem Cell
EEC = Endometrial Epithelial Cell
ESC = Endometrial Stromal Cell
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