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Abstract: Breast milk (BrM) is not only a nutrition supply but also contains a diverse population
of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics
of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and
capable of self-renewal and differentiation to other cells. In this review, we have compared differ-
ent characteristics such as CD markers, differentiation capacity, and morphology of stem cells de-
rived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly
(WJMSC), and human adipose tissue (hADMSC). The literature review revealed that human breast
milk-derived  stem  cells  specifically  express  a  group  of  cell  surface  markers,  including  CD14,
CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106,
CD146, and CD166, were identified which were common in the four sources of stem cells. WJM-
SC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ecto-
derm, and endoderm cell lineages. The ability of hBr-MSCs in differentiation into the neural stem
cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these
cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from
the commonly used sources, such as bone marrow, requires invasive procedures. Although autolo-
gous breast milk-derived stem cells are an accessible source for women who are in the lactation pe-
riod, breast milk can be considered a source of stem cells with high differentiation potential with-
out any ethical concern.
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1. INTRODUCTION
Breast milk (BrM) is not just a nutrition supply, it also

contain  a  wide  range of  bioactive  molecules,  such as  hor-
mones, growth factors, cytokines, and antioxidants, involved
in the normal development of the offspring. BrM also con-
tains  a  diverse  population of  cells  such as  lactocytes,  my-
oepithelial cells, progenitor cells, and stem cells [1-3]. The
cellular composition of human milk is dynamic, and the pro-
portion of different cell types can be changed by many fac-
tors, such as the stage of lactation, health, and infant feed-
ing.  Cells  in  the  BrM  include  probiotic  bacteria,  immune
cells, desquamated epithelial cells as well as stem cells [2].
Generally, BrM cells are categorized as blood-derived and
breast-derived  cells,  and  in  both  of  these  sources,  a  small
subpopulation of  progenitor  or  stem cells  has  been identi-
fied.  Interestingly,  some  of  these  cells  are  able  to  pass
through  the  infant’s  gastrointestinal  tract  and  populate  in
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some  tissues  such  as  the  brain,  spleen,  liver,  and  lymph
nodes [1, 3]. Although extensive research has been carried
out on the field of breast milk stem cells, the source and ori-
gin of multipotent cells found in breast milk are still not com-
pletely addressed.

Several studies have shown that BrM contains a group of
cells expressing typical features of stem cells. For example,
it has been shown that some of them express mammary stem
cell  and  epithelial  progenitor  markers  such  as  α6  integrin
(CD49f) and p63 [4, 5]. Evidence also indicates that these
cells are multipotent [5]. These cells have the capability of
self-renewal, and under certain conditions, can undergo dif-
ferentiation towards at least two types of epithelial lineages,
milk  proteins-producing  CK18+  luminal  cells  and  CK14+
myoepithelial cells [6].

Evidence  indicates  that  a  mesenchymal  stem  cell-like
population exists  in  BrM. It  has been estimated that  up to
6% of  the  cells  in  human  milk  have  the  characteristics  of
MSCs [7]. MSCs are self-renewing, highly proliferative, and
potentially differentiating cells with adherent growing fea-
tures  [8].  This  population  was  positive  for  MSC  surface
markers  such  as  CD44,  CD29,  SCA-1  and  negative  for

2212-3946X/22 $65.00+.00 © 2022  Bentham Science Publishers

Send Orders for Reprints to reprints@benthamscience.net

Current Stem Cell Research & Therapy, 2022, 17, 71-90

71

REVIEW ARTICLE

Comparison of the Characteristics of Breast Milk-derived Stem Cells with
the Stem Cells Derived from the Other Sources: A Comparative Review

http://crossmark.crossref.org/dialog/?doi=10.2174/1574888X16666210622125309&domain=pdf
user
Highlight

user
Highlight

user
Highlight



72   Current Stem Cell Research & Therapy, 2022, Vol. 17, No. 1 Rahmani-Moghadam et al.

CD33,  CD34,  CD45,  CD73,  confirming  their  identity  as
MSCs. Interestingly, the finding revealed the presence of an
MSC-like population in human milk with multi-lineage dif-
ferentiation potential [9]. Our research group has previously
shown that isolated stem cells from human breast milk are
able to differentiate into hepatocytes [10], neural cells [11],
adipocytes as well as osteoblast. Based on our studies, hu-
man breast milk contains a group of cells expressing endo-
dermal markers such as albumin. Besides, we have demons-
trated that a subpopulation of these cells expresses some em-
bryonic stem cell  markers such as TRA-60-1, Oct4, Sox2,
and Nanog, indicating high pluripotency of these cells. We
have  also  reported  that  a  small  population  of  breast  milk-
derived stem cells express embryonic cell markers such as
Nanog, OCT4, Sox2, SEEA4, and TRA 1–60/81 [12]. The
presence of multipotent stem cells in human milk suggests
that breast milk could be an alternative source of stem cells
for autologous stem cell therapy, although the application of
these cells in regenerative medicine needs to be more clari-
fied.

Taking all together, breast milk is a valuable source of
cell population displaying many of the properties typical of
stem cells. In this review, we made an attempt to compare
different characteristics such as CD markers, differentiation
capacity, and morphology of stem cells derived from breast
milk with bone marrow, Wharton jelly, and adipose tissue.
This review outlines unique features of progenitor cells from
breast milk.

2. MESENCHYMAL STROMAL/STEM CELL MARK-
ERS

A group of cell surface molecules has been suggested as
markers for Human Breast Milk MSC (hBr-MSC), as pre-
sented in Table 1. As shown in the Table, the expression pat-
terns  of  the  CD  markers  are  categorized  into  four  levels,
highly  expressed  (>75%),  low expressed  (<25%),  non-ex-
pressed,  and  expressed  (positive),  that  refer  to  data  from
studies where the frequency of the positive cells was not re-
ported.  The  markers  which  are  reported  to  be  highly  ex-
pressed  in  hBr-MSC  include  CD13  [13],  CD14  [13,  14],
CD94d  [13],  CD54  [13],  CD86  [13],  CD140b  [13,  15],
CD166 [13] and CD271 [12, 16]. However, we found contra-
dictory reports about the expression level of CD29 [7,  13,
17-20],  CD34 [7,  12,  13,  16-19],  CD44 [7,  11-17,  19,  21,
22], CD45 [7, 12-14, 18, 19], CD49f [18, 20, 23-25], CD73
[7, 12-14, 16, 19, 25], CD105 [11-16, 19, 22], CD117 [13,
15,  18,  19]  and  CD133  [11-13,  16,  18,  25];  some  reports
claimed these are highly expressed in hBr-MSC, while the
others indicate low expression or lack of expression of the
mentioned markers. This contradiction may be due to isolat-
ing the cells by different methods or from different stages of
lactation (Table 2). As CD marker expression pattern is dif-
ferent in situ and isolated mesenchymal stem cells cultured
in vitro [26], fresh versus cultured hBr-MSC may also show
some  differences  in  CD  marker  profile.  In  most  of  the
studies  that  reported  the  CD  marker  expression  pattern,

Table 1. Comparison of the CD marker expression in WJMSC, hBMSC, hADMSC, and hBr-MSC. CD makers are expressed at least
in one of the four sources of stem cells.

CD Marker Warton Jelly MSC
(WjMSC)

Human Bone Marrow
MSC

(hBMSC)

Human Adipose
MSC

(hADMSC)

Human Breast Milk MSC
(hBr-MSC) References

CD4 + - - Non-Reported
WjMSC: [27]

hBMSC: [28] hADMSC: [28-31]

CD7 + - - Non-Reported
WjMSC:[32] hBMSC [33]

hADMSC:[34]

CD9 + +
+

(>75%)
High expression

Non-Reported
WjMSC:[35] hBMSC:[36]

hADMSC: [31, 37-40]

CD10
+

(>75%)
High expression

+
+

(>75%)
High expression

-
WjMSC: [35, 41-47] hBMSC:
[36, 48-50] hADMSC: [29, 34,

38, 51-53] hBr-MSC:[18]

CD13
+

(>75%)
High expression

+
(>75%)

High expression

+
(>75%)

High expression

+
(>75%)

High expression

WjMSC: [35, 41-45, 47, 54-63]
hBMSC: [28, 31, 36, 48-50, 57,

64-71] hADMSC: [28, 29, 31, 34,
38, 51, 53, 65, 67, 72-77] hBr-M-

SC:[13]

CD14 - - -
+

(>75%)
High expression

WjMSC: [32, 41, 45-47, 57, 59,
60, 63, 78-88] hBMSC: [28, 31,
33, 48, 49, 57, 64-66, 68, 69, 81,
86, 88-109] hADMSC: [28, 29,

31, 34, 38, 65, 73, 75, 76,
110-117] hBr-MSC: [13, 14]

CD24 + - +
+

25%)>)
Low expression

WjMSC: [118] hBMSC: [49]
hADMSC: [119] hBr-MSC: [18,

20]

CD25 + - - Non-Reported
WjMSC: [120] hBMSC: [104]

hADMSC: [31, 34]

(Table 1) contd….
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CD Marker Warton Jelly MSC
(WjMSC)

Human Bone Marrow
MSC

(hBMSC)

Human Adipose
MSC

(hADMSC)

Human Breast Milk MSC
(hBr-MSC) References

CD26 Non-Reported +
+

(>75%)
High expression

Non-Reported hBMSC: [121] hADMSC: [53]

CD29
+

(>75%)
High expression

+
(>75%)

High expression

+
(>75%)

High expression

+
(>75%)

High expression
[7, 13]
25%)>)

Low expression
[18, 19]

WjMSC: [32, 35, 41, 42, 45-47,
54-60, 63, 78, 81, 85, 88,

122-132] hBMSC: [28, 31, 33,
49, 57, 64-66, 68, 71, 81, 88-90,

92, 94, 98, 99, 101, 102, 105,
108, 133-139] hADMSC: [30, 31,
38, 40, 51, 53, 65, 72-75, 77, 111,
113, 140-153] hBr-MSC: [7, 13,

17-20]

CD31 - - - +

WjMSC: [41, 43, 45, 47, 54, 57,
59, 60, 81, 84, 85, 154, 155] hBM-
SC: [28, 48-50, 57, 65, 81, 89, 92,

99, 103-105, 108, 136, 156]
hADMSC: [31, 37-39, 65, 67, 72,

73, 75, 77, 103, 111, 141, 142,
157-165] hBr-MSC: [13, 25]

CD34 - -

+
[29, 38, 157-160, 166]

-
[31, 34, 37, 39, 65, 72-74,
76, 77, 110-113, 116, 117,

140-142, 145, 149,
163-165, 167, 168]

+
25%)>)

Low expression
[13, 18, 19]

-
[7, 12, 16]

WjMSC: [32, 41, 43-47, 54-57,
59, 60, 63, 78-80, 82-86, 88,

122-130, 169-180] hBMSC: [31,
33, 48-50, 57, 65, 66, 68-70, 86,

88-109, 133, 134, 136-139,
181-191] hADMSC: [29, 31, 34,

37-39, 65, 72-74, 76, 77,
110-113, 116, 117, 140-142, 145,
149, 157-160, 163-168] hBr-M-

SC: [7, 12, 13, 16, 18, 19]

CD36 + -
+

(>75%)
High expression

Non-Reported
WjMSC: [192] hBMSC: [49, 50,

98] hADMSC: [29, 31, 53]

CD40 - - + +
WjMSC: [32, 193, 194] hBMSC:
[104] hADMSC: [53] hBr-MSC:

[195]

CD41a Non-Reported + - Non-Reported hBMSC: [196] hADMSC:[30]

CD44
+

(>75%)
High expression

+
(>75%)

High expression

+
(>75%)

High expression

+
[7, 11-17, 19, 21, 22]

(>75%)
High expression

[7, 11, 13, 15, 16]
25%)>)

Low expression
[19]

WjMSC:[32, 35, 41-43, 45-47,
57-60, 63, 78, 81, 85, 88,

122-125, 127, 128, 130, 169-173,
175, 176, 180, 197, 198] hBMSC:
[28, 31, 33, 48, 49, 57, 64-69, 71,
81, 88-90, 92, 94, 98-106, 108,

109, 133, 134, 136-139, 156, 182,
185, 186, 188, 191] hADMSC:
[31, 34, 37-39, 51, 53, 65, 67,

72-75, 77, 111, 113, 114,
140-142, 144, 145, 151, 153, 160,
162, 164, 167, 199-204] hBr-M-

SC: [7, 11-17, 19, 21, 22]

CD45 - - -

+
[12-14, 19]

-
[7, 18]

WjMSC:[32, 41, 43-47, 54-57,
59, 60, 63, 78-86, 88, 122,

125-128, 130, 171, 173-175,
177-180, 197] hBMSC: [28, 31,
33, 48-50, 57, 65, 66, 68-70, 81,
86, 88-109, 134, 137-139, 156,
181-183, 185, 186, 188-191]

hADMSC: [28, 31, 34, 37-39, 51,
65, 67, 72-77, 110-114, 116, 117,

141, 142, 144, 145, 157, 164,
167, 168, 199, 201-203, 205-207]

hBr-MSC:[7, 12-14, 18, 19]

(Table 1) contd….
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CD Marker Warton Jelly MSC
(WjMSC)

Human Bone Marrow
MSC

(hBMSC)

Human Adipose
MSC

(hADMSC)

Human Breast Milk MSC
(hBr-MSC) References

CD47 Non-Reported
+

(>75%)
High expression

+
(>75%)

High expression
Non-Reported hBMSC:[208] hADMSC:[53]

CD49 + + + Non-Reported
WjMSC:[209] hBMSC: [98]

hADMSC: [72]

CD49a + +
+

(>75%)
High expression

Non-Reported
WjMSC:[35] hBMSC: [210]

hADMSC: [31, 53]

CD49b
+

(>75%)
High expression

+
(>75%)

High expression

+
(>75%)

High expression
Non-Reported

WjMSC: [32, 35, 41, 45] hBM-
SC: [33, 50] hADMSC: [30, 31]

CD49c +
+

(>75%)
High expression

+ Non-Reported
WjMSC:[41] hBMSC: [98]

hADMSC: [31]

CD49d

+
[41]

-
[32, 45]

+
25%)>)

Low expression
[33, 211]

-
[49, 104]

+
(>75%)

High expression
[30, 205]
25%)>)

Low expression
[38, 73, 145, 164]

+
(>75%)

High expression

WjMSC: [32, 41, 45] hBMSC:
[33, 49, 98, 104, 211] hADMSC:

[30, 31, 38, 73, 142, 145, 164,
205] hBr-MSC: [13]

CD49e +
+

(>75%)
High expression

+
(>75%)

High expression
Non-Reported

WjMSC: [41, 63, 126] hBMSC:
[48, 66, 104] hADMSC: [30, 31,

38, 51, 53]

CD49f +
+

(>75%)
High expression

-

+
(>75%)

High expression
[20]

25%)>)
Low expression

[18]

WjMSC:[212] hADMSC: [30]
hBMSC: [48, 98] hBr-MSC: [18,

20, 23-25]

CD50 Non-Reported -
+[31]
-[38]

Non-Reported
hBMSC: [33, 50, 69, 104, 106]

hADMSC: [31, 38]

CD51
+

High expression
+

+
(>75%)

High expression
Non-Reported

WjMSC:[122] hBMSC: [33]
hADMSC: [30, 31, 53]

CD54
+

(>75%)
High expression

+ +
+

High expression

WjMSC: [35, 46, 63, 174] hBM-
SC: [33, 48, 104, 213] hADMSC:
[38, 53, 77, 142, 152] hBr-MSC:

[13]

CD56

+
[35, 58]

-
[41, 45]

- - Non-Reported
WjMSC: [35, 41, 45, 58] hBM-

SC: [28, 100] hADMSC: [28, 34,
38, 73]

CD58 + +
+

(>75%)
High expression

Non-Reported
WjMSC:[32] hBMSC:[104] [28,

33] hADMSC: [28, 31, 53]

CD59 +
+

(>75%)
High expression

+
(>75%)

High expression
+

WjMSC:[58] hBMSC: [98, 133]
hADMSC: [29, 38, 51, 53] hBr-

MSC: [214]

CD61 + +

+
[30, 53]

-
[31, 73]

Non-Reported
WjMSC:[58] hBMSC: [33]
hADMSC: [30, 31, 53, 73]

CD62e
+

(>75%)
High expression

Non-Reported - Non-Reported
WjMSC:[35] hADMSC: [31, 38,

73]

CD62P
+

25%)>)
Low expression

- - Non-Reported
WjMSC: [215] hBMSC: [28, 33,

104] hADMSC: [30, 31]

(Table 1) contd….
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CD Marker Warton Jelly MSC
(WjMSC)

Human Bone Marrow
MSC

(hBMSC)

Human Adipose
MSC

(hADMSC)

Human Breast Milk MSC
(hBr-MSC) References

CD62L
+

25%)>)
Low expression

-
+

25%)>)
Low expression

Non-Reported
WjMSC: [215] hBMSC: [33, 48,

104] hADMSC: [216]

CD63 + + + Non-Reported
WjMSC:[54] hBMSC: [217]

hADMSC: [31, 218]

CD68 + - + +
WjMSC:[35, 179] hBMSC: [105]

hADMSC: [111, 219] hBr-
MSC:[17]

CD71

+
[130]

-
[123]

+
25%)>)

Low expression
+ Non-Reported

WjMC:[123, 130] hBMSC: [94,
104] hADMSC: [31, 53, 73, 164]

CD 73 +
+

(>75%)
High expression

+
(>75%)

High expression

+
25%)>)

Low expression
[14, 19, 25]

-
[7, 12, 13, 16]

WjMSC:[32, 35, 43, 45-47,
54-60, 63, 79-85, 88, 124-128,
130, 171, 172, 175, 177, 178,

180] hBMSC: [28, 36, 48, 49, 57,
65-67, 70, 81, 88-92, 95-97, 99,
100, 102, 103, 106, 107, 134,

139, 156, 181, 183, 185-191, 211]
hADMSC: [31, 37, 39, 52, 53, 65,
75, 103, 110-112, 114, 116, 117,

141, 143, 160, 162, 166, 168,
200, 202, 204-207, 220-223] hBr-

MSC: [7, 12-14, 16, 19, 25]

CD 83 Non-Reported - + -
hBMSC: [106] hADMSC: [224,

225] hBr-MSC:[13]

CD86 - - - +
WjMSC: [32, 79, 193, 194] hBM-
SC: [104, 106] hADMSC: [116]

hBr-MSC: [13]

CD 90
+

(>75%)
High expression

+
(>75%)

High expression

+
(>75%)

High expression

+
25%)>)

Low expression

WjMSC: [35, 41-43, 45-47,
54-60, 63, 78-80, 83-86, 88,
124-128, 171-178, 180, 197]
hBMSC: [28, 31, 33, 48, 49,

65-71, 86, 88-92, 94-104, 106,
107, 109, 134, 136, 137, 139,
156, 181-183, 185-191, 211]

hADMSC: [28, 30, 31, 34, 37, 39,
51-53, 65, 72, 73, 75, 103,

110-114, 116, 117, 140, 142, 153,
157, 159, 160, 163, 166, 168,

200, 201, 204-207, 220-223, 226]
hBr-MSC: [11-14, 16, 19, 25]

CD95 + Non-Reported
+

(>75%)
High expression

Non-Reported WjMSC:[123] hADMSC: [53]

CD102
+

Low expression
Non-Reported + Non-Reported WjMSC: [215] hADMSC: [31]

CD105 +
+

(>75%)
High expression

+
(>75%)

High expression
25%)>)

Low expression
[73, 157]

+
(<25%)

Low expression
[11, 13-16, 19, 22]

-
[12, 16]

WjMSC:
[32, 35, 42, 45-47, 54-60, 63,
79-86, 88, 122-130, 169-178,

180, 197, 198] hBMSC: [28, 31,
36, 48, 49, 57, 64-68, 70, 71, 81,
86, 88-92, 95-105, 107-109, 134,

136, 138, 139, 156, 181-183,
185-191, 211, 213] hADMSC:
[28, 31, 38, 52, 53, 65, 72-76,

103, 110-114, 117, 140-144, 148,
153, 157, 159, 160, 166, 168,

199-201, 204-207, 220, 222, 223,
226, 227] hBr-MSC: [11-16, 19,

22]

(Table 1) contd….
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CD Marker Warton Jelly MSC
(WjMSC)

Human Bone Marrow
MSC

(hBMSC)

Human Adipose
MSC

(hADMSC)

Human Breast Milk MSC
(hBr-MSC) References

CD106

+
[57, 59, 60, 85, 169, 170,

197]
-

[88, 125, 180]

+
[28, 57, 94, 98, 102, 105,

106, 156]
-

[48, 50, 71, 88, 89, 104,
107, 108, 138, 213]

+
[31, 72, 164]

-
[30, 73, 77, 142, 145]

+
(<25%)

Low expression

WjMSC: [57, 59, 60, 85, 88, 125,
169, 170, 180, 197] hBMSC: [28,

48, 50, 57, 71, 88, 89, 94, 98,
102, 104-108, 138, 156, 213]

hADMSC: [30, 31, 72, 73, 77,
142, 145, 164] hBr-MSC: [11, 13,

16]

CD117

+
(>75%)

High expression
[35, 44, 228]

(<25%)
Low expression
[63, 180, 229]

-
[32, 43, 45, 61, 88, 118]

-

+
[31, 39, 227]

(<25%)
Low expression

[39]
-

[30, 37, 72, 77, 111, 151,
226]

+
[13, 15, 19]

(>75%)
High expression

[15]
-

[18]

WjMSC: [32, 35, 43-45, 61, 63,
88, 118, 180, 228, 229] hBMSC:
[48-50, 88, 98, 101, 213] hADM-
SC: [30, 31, 37, 39, 72, 77, 111,

151, 226, 227] hBr-MSC: [13, 15,
18, 19]

CD120a Non-Reported - + Non-Reported
hBMSC: [33, 104] hADMSC:

[31]

CD120b Non-Reported - + Non-Reported hBMSC: [104] hADMSC: [31]

CD123 -
+

(<25%)
Low expression

- -
WjMSC: [180] hBMSC: [104]
hADMSC: [31] hBr-MSC: [12,

16]

CD124 Non-Reported + - Non-Reported hBMSC: [94] hADMSC: [31]

CD133

+
[35]

-
[32, 54, 56, 125]

- -

+
[11, 13, 18, 25]

-
[12, 16]

WjMSC: [32, 35, 54, 56, 125]
hBMSC: [33, 49, 70, 102, 188]
hADMSC: [30, 31] hBr-MSC:

[11-13, 16, 18, 25]

CD140a - + + Non-Reported
WjMSC:[63] hBMSC: [230]

hADMSC: [30, 31]

CD140b Non-Reported +
+

(>75%)
High expression

+
High expression

hBMSC: [231] hADMSC: [53]
hBr-MSC: [13, 15]

CD146

+
[88, 171, 197]

-
[84, 124, 172]

+

+
[53]

-
[31]

+

WjMSC: [84, 88, 124, 171, 172,
197] hBMSC: [65, 71, 88, 92, 98,
99, 107, 190, 191, 211] hADM-

SC: [31, 53] hBr-MSC:[12]

CD147 +
+

(>75%)
High expression

+
(>75%)

High expression
Non-Reported

WjMSC: [232] hBMSC: [98]
hADMSC: [53]

CD163 - + Non-Reported Non-Reported WjMSC:[179] hBMSC: [233]

CD164 + Non-Reported + Non-Reported
WjMSC:[124] hADMSC: [31,

53]

CD166
+

(>75%)
High expression

+
(>75%)

High expression

+
(>75%)

High expression

+
(>75%)

High expression

WjMSC: [32, 35, 45, 47, 57-60,
63, 124, 126, 130, 171, 197] hBM-

SC: [28, 36, 48, 49, 57, 68, 71,
90, 98, 99, 101, 104, 106, 107,
135, 137, 139, 181, 182, 191]

hADMSC: [28, 31, 38, 51, 53, 72,
74-77, 141, 142] hBr-MSC: [13]

CD200 Non-Reported
+

High expression
+ Non-Reported hBMSC: [211] hADMSC: [75]

CD271 -
+

(>75%)
High expression

+
[53]

-
[31]

+
(>75%)

High expression

WjMSC: [54, 124, 198] hBMSC:
[98, 190, 191] hADMSC: [31, 53]

hBr-MSC: [12, 16]

CD276 Non-Reported + + Non-Reported hBMSC: [208] hADMSC: [31]

hBr-MSCs were collected from a wide range of times. There-
fore, understanding the expression profile of CD markers in
different stages of lactation needs more investigation.

On the other hand, we have listed the markers with low
expression level in hBr-MSC (Table 1) including CD24 [18,
20], CD90 [11-14, 16, 19, 25], CD106 [11, 13, 16]. Finally,
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Table 2. Diffrerent methods from the isolation of cell of breast milk for charactriztion.

Refrences Isolation Conditions Freshly Isolate/Cultured
[7] Full term, from day 0 until day 5 post-delivery after culture (2 to 6 passages)

[11] From various stages of lactation after culture

[12]
Full term, mother age 22–30 years, from day 1 to 6 months

post-delivery
Fresh (without passages)

[13]
Full term, mothers age 21–34 years, from day 3 to day 7 post-

delivery
Fresh (without passages)

[14] From 2 days to 2 months post-delivery after culture (Three weeks after isolation)

[15] Every day from 0 to 7 post-delivery day after culture

[16] Full term, from day 0 until month 6 post-delivery Fresh (without passages)

[17] From various stages of lactation after culture

[18] From various stages of lactation Fresh (without passages)

[19]
Full-term and preterm mothers, from 14 to 49 day post-deliv-
ery for preterm, and from 29 to 50 day for full term mothers

Fresh (without passages)

[24] From various stages of lactation Fresh (without passages)

it has been reported that CD10, CD83, and CD123 are not
expressed in hBr-MSC.

Based on Table 1, the shared markers among the isolated
MSc  from  Warton  Jelly  (WJMSC),  human  bone  marrow
MSC (hBMSC), human adipose MSC (hADMSC) and hBr-
MSC are CD13, CD29, CD44, CD105, CD106, CD146 and
CD166. Importantly, the markers express just in hBr-MSC,
but  not  in  the other  MSCs,  are CD14 [13,  14],  CD31 [13,
25], CD45 [12-14, 19], and CD86 [13].

The  review  of  the  literature  shows  that  CD9,  CD49,
CD49a,  CD49b,  CD49c,  CD49e,  CD51,  CD  58,  CD61,
CD63,  CD71,  and  CD147  are  expressing  in  the  WJMSC,
hBMSC, hADMSC; however, these markers were not report-
ed to be expressed in hBr-MSC. This list could be helpful in
future  studies  for  a  more  precise  characterization  of  these
sources of cells.

Also, the literature review revealed that several markers
were negatively expressed or not reported to be expressed in
four sources of stem cells (Table 3) [234-239].

3. MORPHOLOGY OF STEM CELS FROM VARIOUS
SOURCES

The literature review shows that hBr-MSCs have a simi-
lar phenotype to fibroblasts [7, 12]. However, it has been re-
ported that the isolated cells initially contained an epithelial--
like cell population, and during the second week of culture,
the  phenotype  changes  to  typical  slender  fibroblast-like
cells. This morphological change has been suggested as a re-
sult of epithelial to mesenchymal transition [7]. Sani et al.
detected two cell populations in the cultures of isolated hBr-
MSCs, fibroblast-like and round cells. After 10±2 days, the
fibroblast-like cells were prominent cell types in the cultures
[12].  On  the  other  hand,  the  morphology  of  most  of  the
WJMSCs and hBMSCs has been recorded as fibroblast-like
cells [240]. However, reports show that hADMSCs also con-
tains two cell population based on nucleus size and lectin re-
activity [241].

4. DIFFERENTIATION CAPACITY OF STEM CELLS
FROM VARIOUS SOURCES

It has been shown that a group of embryonic stem cell
(ESC)  associated  genes,  such  as  Nanog,  OCT4,  Sox2,
SEEA4, and TRA 1–60/81 and KLF4, are expressed in a sub-
population  of  hBr-MSC  [9,  11].  Furthermore,  these  cells
share some similarities in the phenotype, colony morpholo-
gy,  and  differentiating  capability  with  ESCs  [9,  242].  As
multipotent stem cells, hBr-MSCs have been differentiated
into all three primary germ layers, ectoderm, mesoderm, and
endoderm  (Fig.  1).  Furthermore,  mesenchymal  stem  cell
markers have also been shown to be expressed in a subpopu-
lation of  the cells  derived from BrM [243].  Hence,  due to
embryonic stem cell properties, hBr-MSCs may be greatly
able to differentiate toward neural cell lineages [244, 245],
including astrocyte [11], neuron [1, 9, 11], and oligodendro-
cyte [11].

A previous study showed that hBr-MSCs could differen-
tiate into the neural stem cells and neurons [11]. Both mam-
mary gland and nervous system originate from the same ori-
gin, ectoderm [246], and they share common regulatory path-
ways in the development. Besides, a subpopulation of hBr-
MSCs express nestin, which is a marker of neural progenitor
cells. Therefore, hBr-MSCs may be considered as a reliable
source  for  differentiation  to  the  neural  cell  lineages  [11].
The same differentiation potency toward neurons has been
shown in the isolated mesenchymal stem cells from human
adipose tissue [247-251], bone marrow [108, 138, 252-254],
and  Wharton’s  jelly  [255-263].  In  the  case  of  bone  mar-
row-originated stem cells, there are also reports indicating
that these cells can differentiate into the glial cell [108, 138].
Moreover,  Wharton’s  jelly-originated  cells  are  shown  to
have  the  potential  to  differentiate  toward  Schwann-cell
[256], oligodendrocytes [263], and auditory hair cells [255].

Differentiation of hBr-MSCs into mesoderm-originated
cells such as adipocytes [1, 7, 9, 12], chondrocyte [1, 7, 9,
264, 265], osteocyte [1, 7, 12], and cardiomyocytes [9, 266]
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Table 3. Comparison of the expression of CD markers which are negative or non-reported in WJMSC, hBMSC, hADMSC, and hBr-
MSC.

CD Marker Warton Jelly MSC
(WjMSC)

Human Bone Mar-
row MSC
(hBMSC)

Human Adipose
MSC

(hADMSC)

Human Breast Milk MSC
(hBr-MSC) References

CD3 - - - Non-Reported
WjMSC: [32, 45, 84]

hBMSC: [28, 48, 98, 183]
hADMSC: [28, 29, 34]

CD11a Non-Reported - - Non-Reported hBMSC: [104] hADMSC: [30, 31, 38, 201]

CD11b - - - Non-Reported
WjMSC: [47, 128, 178] hBMSC: [90, 98, 107, 185,
186, 234] hADMSC: [30, 34, 38, 51, 75, 201, 220,

223]

CD15 Non-Reported - - Non-Reported hBMSC: [28] hADMSC: [28, 29, 31, 158]

CD16 Non-Reported - - Non-Reported hBMSC: [28] hADMSC: [28, 34, 73, 152]

CD18 - Non-Reported - Non-Reported WjMSC:[47] hADMSC: [30, 38, 152]

CD19 - - - Non-Reported

WjMSC: [32, 80, 83, 128, 178, 181, 197, 235] hBM-
SC: [28, 48, 66, 92, 98, 107, 138, 181, 191]

hADMSC:
[28, 29, 34, 75, 117, 207, 223]

CD33 - - - -
WjMSC: [32, 41, 44, 47] hBMSC: [28] hADMSC:

[28, 34] hBr-MSC:[7]

CD38 - - - Non-Reported
WjMSC: [44, 57, 59, 60, 123, 174] hBMSC: [28, 33,

49, 50, 57] hADMSC: [29, 31]

CD79 - - Non-Reported Non-Reported WjMSC:[44] hBMSC: [90, 98]

CD79A - Non-Reported - Non-Reported WjMSC:[83] hADMSC:[236]

CD80 - - - Non-Reported
WjMSC: [32, 79, 193, 194] hBMSC: [103, 104, 106]

hADMSC: [103]

CD95L Non-Reported - - Non-Reported hBMSC: [48] hADMSC: [151]

CD104 Non-Reported - - Non-Reported hBMSC: [28] hADMSC: [28, 31, 73]

CD115 - Non-Reported - Non-Reported WjMSC:[47] hADMSC: [31]

CD126 Non-Reported - - Non-Reported hBMSC: [237] hADMSC: [31]

CD127 Non-Reported - - Non-Reported hBMSC: [104] hADMSC: [31]

CD144 - - - -
WjMSC: [169, 170, 172] hBMSC: [28, 49, 102]

hADMSC: [28, 67] hBr-MSC: [12]

CD235a - - - Non-Reported
WjMSC: [180, 238] hBMSC: [238] hADMSC: [238,

239]

is also reported. We did not find any study which compares
the potency of  the differentiation of  hBr-MSCs with three
other cell sources. However, it has been shown that osteo-
genic differentiation in hBMSCs is higher than hADMSCs
[65]. Furthermore, quantitative analysis has shown that hBM-
SCs had better osteogenic and chondrogenic abilities, while
urine-derived  stem  cells  (USCs)  had  superior  adipogenic
and endothelial cell differentiation abilities than hBMSCs or
Placenta  Decidua Basalis-derived stem cells  (PDB-MSCs)
[267]. It has been claimed that hADMSCs have higher adipo-
genic differentiation potential than hBMSC [268].

WJMSCs are able to differentiate into mesoderm-origi-
nated cells. Several studies have reported the differentiation
potency of these cells into adipocytes [269, 270], chondro-
cyte [270-272], osteocytes [270, 273, 274], cardiomyocyte
[260, 275-277], Sertoli cell [138, 278], endometrial epithe-
lial  cell  (EEC),  and endometrial  stromal cell  (ESC) [279].
Similarly, there are reports of the same potency for BMSCs,
including adipocyte [108, 138, 254, 280], chondrocyte [108,
138,  280],  osteocyte  [108,  138,  254,  280],  cardiomyocyte

[281-283],  skeletal  myocytes,  tendon  cell  [280],  stromal
cells  [138],  and cells  of visceral  mesoderm [280].  Finally,
ADMSCs  are  able  to  differentiate  toward  adipocyte  [103,
247, 248, 268, 284, 285], chondrocyte [103, 247, 248, 268,
285-287],  osteocyte  [103,  247,  248,  268,  284,  285,
287-290], cardiomyocyte [291, 292], and skeletal myocyte
[266, 286].

Finally, we also reviewed the potential differentiation of
these four sources of stem cells toward endoderm originated
cells. In a study, our team evaluated the differentiation poten-
tial of Br-MSCs into hepatocyte-like cells [10]. Based on the
results, hepatic nuclear factor, albumin, cytokeratin 18 and
19, cytochrome P2B6, glucose-6- phosphatase, and claudin
were expressed in the differentiated cells. Furthermore, func-
tional assays showed glycogen storage and omission of indo-
cyanine green; also, cell aggregate formation was observed
with  the  accumulation  of  the  differentiated  cells  to  form
spheroids. Differentiation of hBr-MSCs into the beta cell [9]
and hepatocyte [1, 9, 10] was also reported. Therefore, hBM-
SCs are also known as a promising source of beta-cells [133,
293-295] and hepatocyte [296].
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Fig. (1). Comparison of the differentiation capacity in four sources of WJMSC, hBMSC, hADMSC, and hBr-MSC into different cell lin-
eages. All four sources can differentiate into components of all three germ layers (ectoderm, mesoderm, and endoderm). (A higher resolution
/ colour version of this figure is available in the electronic copy of the article).

Differentiation of hADMSCs into various endoderm-o-
riginated  cells  has  been  reported  in  several  studies,  alpha
cell [297], beta-cell [295, 297], hepatocyte [249, 284, 296,
298,  299],  and  gamma  cell  [297].  The  same  reports  exist
about Wharton's Jelly Derived Mesenchymal stem cells, be-
ta cells [133, 295, 300], and hepatocyte [170, 299, 301-307].
It  was shown that  WJMSC expresses a  high level  of  tran-
scription factors involved in liver development. The produc-
tion  of  early  hepatic  markers  has  made  Wharton’s  jelly  a
suitable  source  of  hepatocyte  differentiation  compared  to
hBMSC and hADMSC [303].

5.  hBr-MSCs  APPLICATIONS  IN  PRECLINICAL
AND CLINICAL TRIAL STUDIES

Given the novelty, there are few studies to treat a disease
or  injury  tissue  using  hBr-MSCs.  Borhani-Haghighi  et  al.
conducted a preclinical study to investigate the therapeutic
effects of the hBr-MSC-conditioned medium in a rat model
of spinal cord injury. They showed that intrathecal adminis-
tration of the hBr-MSC-conditioned medium reduced apopto-
sis and inflammation at the site of injury and improved sen-
sory,  motor,  locomotor,  and sensorimotor  neurons in  a  rat
model of spinal cord injury [308]. This finding displays the
therapeutic capacity of hBr-MSC and their potential to re-
duce inflammation and tissue damage via secreted factors.

Also, the literature showed a few ongoing clinical trial
studies  in  this  field.  In  phase  1  clinical  trial,  fresh  breast
milk is injected intranasally to cure intraventricular hemor-
rhage  in  preterm  infants.  It  has  been  suggested  that  fresh

breast milk can be considered a safe source of stem cells for
preterm patients suffering from intraventricular hemorrhage
[309].  In  the  other  ongoing  studies,  the  infants  suffering
from necrotizing enterocolitis were fed with stem cell-rich
breast milk [310]. Not only hBr-MSC can be applied in re-
generative medicine, but it can also provide a non-invasive
source  of  stem  cells  for  food  engineering  as  it  reduces
slaughtering animals and prevents the detrimental influence
of livestock production [311].

CONCLUSION
Human breast milk is a remarkable source of stem cells.

These cells  have multilineage differentiation potential  and
show  mesenchymal  and  embryonic  stem  cells  properties.
This  literature  review  revealed  that  human  breast  milk-
derived stem cells were expressing specifically a group of
cell  surface  markers,  including  CD14,  CD31,  CD45,  and
CD86.  Importantly,  a  group  of  markers,  CD13,  CD29,
CD44, CD105, CD106, CD146, and CD166, were retrieved,
which are common in the four studied stem cells WJMSC,
hBMSC, hADMSC, and hBr-MSC.

The differentiation potential of these cells was also com-
pared. Based on the literature review, hBr-MSCs are potent-
ly able to differentiate toward the mesoderm, ectoderm, and
endoderm originated cells. The same ability has been report-
ed for the WJMSC, hBMSC, and hADMSC. The ability of
hBr-MSCs  in  differentiation  toward  the  neural  stem cells,
neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and
cardiomyocytes has made these cells a promising source of
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stem cells in regenerative medicine. Often, isolation of stem
cells from the commonly used sources,  such as bone mar-
row,  requires  invasive  procedures.  Although  autologous
breast milk-derived stem cells are an accessible source for
lactating women, breast milk is a non-invasive and abundant
source of stem cells, with high potential cells for differentia-
tion  without  any  ethical  concern.  Several  studies  indicate
hBr-MSC have the potency to differentiation to a wide varie-
ty of cells; however, more studies are needed to further clari-
fy the characteristics of the differentiated cells and their func-
tionality.
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